VCG Example
- User 1 needs both A and B and has valuation z.
- User 2 needs A and has valuation x
- User 3 needs B and has valuation y

If z > x+y
- 1 gets A and B and pays x+y
If z < x+y
- 2 gets A and 3 gets B
 - If z > y, 2 pays z-y
 - If y > z, 2 pays 0

Static vs. Multi Stage
- Static Games
 - Players choose strategies simultaneously, without knowing what the others do.
- Multi-Stage
 - Game is played in multiple rounds
 - Players may see how others played in previous rounds.
 - That information helps choose how to play in the next round.
 - A strategy is a full specification of what actions to take in each stage, as a function of the observations from previous stages.

Repeated Innovating Firms Game (Repeated Prisoners Dilemma)
Firm A
Firm B
- Recall, Both firms innovate in the one-shot game.
 - Combined reward is 0.
 - If they had both stagnated instead, their combined reward would have been 4.
- What happens if the game is repeated?
 - Same game is repeated every year forever.
 - NPV of future payoffs is discounted by a discount factor β.

Repeated Innovating Firms Game
- Strategy: I will stagnate as long as you do.
- Threat: If you choose to innovate once, I will innovate forever thereafter.
- This is a NE if β > 1/3

Repeated Innovating Firms Game (Repeated Prisoners Dilemma)
Firm A’s:
\[\sum_{n=0}^{\infty} \beta^n A(x_n, y_n) \]
Firm B’s:
\[\sum_{n=0}^{\infty} \beta^n B(x_n, y_n) \]
Where
- \(x_n \): Albert’s action in slot n
- \(A() \): Albert’s payoff function
- \(y_n \): Bob’s action in slot n
- \(B() \): Bob’s payoff function
- β: Discount factor

Repeated Innovating Firms Game
- Proof:
 - Suppose at time t, A innovates
 - B retaliates by innovating forever thereafter
 - A is forced to innovate at times t+1, t+2, ... as well
 - A’s net payoff
 - One Step Reward
 - Future Consequences
 \[\Delta = \beta (3 - 2) + \sum_{n=t+1}^{\infty} \beta^n (0 - 2) \]
 \[= \beta - 2 \frac{\beta^{t+1}}{1 - \beta} \]
 \[= \frac{\beta^t}{1 - \beta} (1 - \beta - 2\beta) \leq 0 \text{ when } \beta \geq \frac{1}{3} \]
Repeated Innovating Firms Game

- **Intuition**
 - When β is large, future consequences of breaking the collusion agreement outweigh short term gain.
 - When β is small, short term gain is more important than long term consequences.

SPE

- Player 2 can “threaten” to choose R in stage 2 to get Player 1 to pick R is stage 1.
 - But in the subgame starting in slot 2, Player 2 is compelled to pick L.
 - Player 2’s threat is not credible.
 - (R,R) is indeed a NE, but not SPE.
 - Only (L,L) is a SPE.

Repeated Innovating Firms Game

- We said that the following strategy profile is a Nash Equilibrium:
 - **Strategy**: I will stagnate as long as you do.
 - **Threat**: If you choose to innovate once, I will innovate forever thereafter.

Is it a SPE?

- Yes.
- In the subgame after the first deviation, it is rational to Innovate forever thereafter if you expect your opponent to do the same.

Repeated Innovating Firms Game

- “Folk Theorem” - Cooperating can be rational if games are repeated forever.
- However, threat strategies can be used to enforce other outcomes.

Claim: Any Reward vector in the green region can be enforced by an SPE.

Repeated Innovating Firms Game

- Proof:
 - Consider v in the green region: $v = \sum_{j=1}^{4} \lambda_j r_j$, $v > (0,0)$
 - Pick integers N_j that satisfy $\lambda_j \approx N_j/N$ for $j = 1, \ldots, 4$
 - $N = N_1 + \cdots + N_4$
 - They agree to play
 - (I,I) the first N_1 steps
 - (S,S) the next N_2 steps etc.
 - When someone deviates from the schedule, the other retaliates by playing I forever thereafter.

Finitely Repeated Innovating Firms Game

- Suppose they play the game only N times.
 - Is it a SP Equilibrium to play (S,S) in all turns?
 - Consider the Nth stage of the game.
 - In the Nth stage, the players don’t have to worry about how their action affects the future.
 - Thus at the Nth stage both players Innovate.
 - (This is a dominant strategy for both players.)
 - At time $N-1$, the players know their actions can’t affect the future.
 - Thus (I,I) is again the dominant strategy.
Finitely Repeated Innovating Firms Game

- By induction,
 - The players play (I,I) in every slot.
 - Such a strategy profile is the only Sub-Game Perfect Nash Equilibrium (SPE).

Example: Cournot Competition

- Two firms produce goods
- Choose quantities \(q_1, q_2 \)
- Market clearing price
 - \(A - q_1 - q_2 \)
- Cost of production is \(C \) per unit
 - \(U_1(q_1, q_2) = (A - q_1 - q_2)q_1 - Cq_1 \)
 - \(U_2(q_1, q_2) = (A - q_1 - q_2)q_2 - Cq_2 \)
- Firm 1 Best Response
 - \(q_1^* = \arg \max q_1 U_1(q_1, q_2) = \frac{B}{2} \)
- Cournot Competition

Repeated Cournot Competition

Q: Is it possible for two firms to reach an agreement to produce \(B/4 \) instead of \(B/3 \) each?
- Consider the strategy: I will produce \(B/4 \) as long as you do. If you deviate, I will produce \(B/3 \) forever thereafter.

A firm has two choices in each round:
- Cooperate: produce \(B/4 \) and make profit \(B^2/8 \)
- Cheat: produce \(3B/8 \) and make profit \(9B^2/64 \)

But in the subsequent rounds, cheating will cause
 - its competitor to produce \(B/3 \) as punishment
 - its own profit to drop back to \(B^2/9 \)

Revised Cournot Competition

Is there any incentive for a firm not to cheat?
- Let’s look at the accumulated payoffs:
 - If it cooperates:
 \[S_C = (1 + \delta + \delta^2 + \delta^3 + \ldots) B^2/8 = B^2/8(1 - \delta) \]
 - If it cheats:
 \[S_D = 9B^2/64 + (\delta + \delta^2 + \delta^3 + \ldots) B^2/9 \]
 \[= (9/64 + \delta(1 - \delta)) B^2/9 \]
 - So it will not cheat if \(S_C > S_D \) This happens only if \(\delta > 9/17 \).

Conclusion
 - If future return is valuable enough to each player, then strategies exist for them to play socially efficient moves.
Final Remarks

- Game Theory important tool in conceptualizing strategic interactions
 - Between Competing Firms
 - Buyers and Sellers
 - Other Interacting Agents

First Price Auction

- Suppose 2 bidders.
 - One has valuation 1, the other 0.5
- Suppose both bidders know the valuations of the others - “full information”
- What should they bid?

First Price Auction (cont’d)

- Consider a bidder j bidding in this auction, needing to choose bid b_j
 - Suppose everyone else bids: aV_i where a is some fraction we want to solve for.
 - Chance j wins:
 $$\prod_{i \neq j} p(b_j > aV_i) = \left(\frac{b_j}{a} \right)^{N-1}$$
 - Expected Payoff:
 $$\left(\frac{b_j}{a} \right)^{N-1} (v_j - b_j)$$

First Price Auction (Cont’d)

- $b_j = \left(\frac{v_j}{N-1} \right) N$
- Differentiate w.r.t. b_j
 $$N-1 \left[\frac{b_j}{a} \right]^{N-2} (v_j - b_j) + \left(\frac{b_j}{a} \right)^{N-1} = 0$$
 $$\frac{(N-1)v_j - Nb_j}{a} = 0$$
 $$b_j = \frac{N-1}{N} v_j$$

Second Price Auction

- Suppose one item for bid
- Users value the item at
 - V_i
- They bid
 - b_i
- The highest bidder wins and pays the second highest bid.
Second Price Auction

- The second price auction is “incentive compatible”
- No user has an incentive to not bid their true valuation
 - Suppose user i unilaterally lowers his bid $b_i < V_i$
 - Might lose auction to someone with lower valuation
 - If i wins, his payment is still b_i so he gained nothing by underbidding.

Mechanism Design

- A game to allocate resources to users
 - Can be a collection of items
 - User valuations can be complicated functions of which items she gets and in what quantities
- Users make bids and then a Principal agent determines allocation and payments
- Possible goal: Design the mechanism so that resources are allocated in a way that maximizes social welfare – the sum of everyone’s utilities
- Another Possible Goal: Design the mechanism so that Auctioneer (the Principal) maximizes revenue

Revelation Principle

- Any mechanism can be implemented in a way so that users are truth revealing
- Why

Vickery Clark Groves

- Idea:
 - Consider user i
 - Consider welfare of other users under optimal allocation if i were not present
 - Consider welfare of other users under optimal allocation if i were present
 - Make user i pay the difference.

VCG Example

- User 1 needs both A and B and has valuation z.
- User 2 needs A and has valuation x.
- User 3 needs B and has valuation y.

 - If $z > x+y$
 - 1 gets A and B and pays $x+y$
 - If $z < x+y$
 - 2 gets A and 3 gets B
 - If $y > z$, 2 pays $y-z$
 - If $y < z$, 2 pays 0
Facts about VCG

- Any efficient truth-telling mechanism that works for a set of type profiles is a VCG mechanism
- VCG is not budget balanced

Auction Revenue

- What does a 2nd price auction generate in the same situation?
 - What is the distribution of the 2nd highest among uniforms?
 - If highest is x, conditional mean of next highest is x(N-1)/N
 - Integrating across density of 1st highest:
 \[
 \int_0^{N-1} \frac{N-1}{N} x^{N-1} dx = \frac{N-1}{N+1}
 \]

Revenue Equivalence Theorem

- If 2 auctions are designed such that
 - A bidder of a given type has the same chance of winning
 - A bidder of the lowest type gets the same expected utility
- Then,
 - The expected revenue to the auctioneer is the same!

Reserve Price

- Consider 2nd price auction with reserve price R
 - With chance N R^{N-1} (1-R)^1 exactly one above reserve price
 - Revenue with reserve: R
 - Revenue without reserve: ([N-1]/N) R
 - With chance (1-R)^N everyone below reserve price
 - Revenue with reserve: 0
 - Revenue without reserve: ([N-1]/(N+1)) R

Myerson Auction

- In 1981 Myerson derived the form of the "optimal" auction for wide class of settings.