Problem 6, Harrington Chapter 10

a. Derive the conditions whereby it is a symmetric BNE for a candidate to enter only when she has a low personal cost from doing so.

ANSWER: It is a symmetric Bayes-Nash equilibrium for a senator to enter only when she has low personal cost if and only if

\[
\begin{align*}
\text{Low type: } p(v_2 - f_L) + (1 - p)(v_1 - f_L) &\geq 0 \Rightarrow pv_2 + (1 - p)v_1 \geq f_L, \\
\text{High type: } 0 \geq p(v_2 - f_H) + (1 - p)(v_1 - f_H) \Rightarrow f_H \geq pv_2 + (1 - p)v_1.
\end{align*}
\]

These two conditions can be combined to yield

\[f_H \geq pv_2 + (1 - p)v_1 \geq f_L.\]

This condition holds when \(p \) is close to 1.

b. Derive the conditions whereby it is a symmetric BNE for a candidate to enter for sure when she has a low personal cost and to enter with some probability strictly between 0 and 1 when she has a high personal cost.

ANSWER: Consider a symmetric strategy profile such that (1) if the candidate has low cost, she enters and (2) if she has high cost, she enters with probability \(q \).

\[
\begin{align*}
\text{Low type: } [p + (1 - p)q] &\geq (1 - q)(v_1 - f_L) \\
\Rightarrow [p + (1 - p)q]v_2 + (1 - p)(1 - q)v_1 &\geq f_L. \\
\text{High type: } 0 \geq [p + (1 - p)q] &\geq (1 - q)(v_1 - f_H) \\
\Rightarrow q = \frac{pv_2 + (1 - p)v_1 - f_H}{(1 - p)(v_1 - v_2)} &\Leftrightarrow q = \frac{(1 - p)(v_1 - v_2) + v_2 - f_H}{(1 - p)(v_1 - v_2)}.
\end{align*}
\]

[SOL10.6.1]

With the high type, she must be indifferent between entering and not entering. For this to be an equilibrium, the derived value for \(q \) must lie between 0 and 1:

\[
0 < \frac{(1 - p)(v_1 - v_2) + v_2 - f_H}{(1 - p)(v_1 - v_2)} < 1
\]

\Rightarrow \frac{(1 - p)(v_1 - v_2) + v_2 - f_H}{(1 - p)(v_1 - v_2)} > 0 \Rightarrow pv_2 + (1 - p)v_1 > f_H.

[SOL10.6.3]

If we substitute (SOL10.6.2) into (SOL10.6.1), the expression becomes \(f_H(v_1 - v_2) \geq f_L(v_1 - v_2) \), which always holds true. This means (SOL10.6.2) implies (SOL10.6.1), so the only condition we need is (SOL10.6.2). If \(pv_2 + (1 - p)v_1 > f_H \), then there is an equilibrium in which a low-cost Senator enters and a high-cost one randomizes. If \(f_H \geq pv_2 + (1 - p)v_1 \geq f_L \), then, as we know from part (a), there is an equilibrium in which a low-cost Senator enters and a high-cost one does not.

c. Find some other BNE distinct from those described in (a) and (b).

ANSWER: There is also an asymmetric equilibrium in which Senator 1 always enters and Senator 2 enters only when she has low cost. Given Senator 2’s strategy, it is always optimal for Senator 1 to enter if and only if

\[
\begin{align*}
\text{Low type: } p(v_2 - f_L) + (1 - p)(v_1 - f_L) &\geq 0 \Rightarrow pv_2 + (1 - p)v_1 \geq f_L, \\
\text{High type: } p(v_2 - f_H) + (1 - p)(v_1 - f_H) &\geq 0 \Rightarrow pv_2 + (1 - p)v_1 \geq f_H.
\end{align*}
\]

Given Senator 1’s strategy, it is optimal for Senator 2 to enter only when she has low personal cost if and only if

\[
\begin{align*}
\text{Low type: } v_2 - f_L &\geq 0 \\
\text{High type: } v_2 - f_H &\leq 0.
\end{align*}
\]

The last two inequalities obviously hold. Hence, this equilibrium exists if \(pv_2 + (1 - p)v_1 \geq f_H \).
a. Find a separating PBNE.

ANSWER: Consider the following separating strategy profile where $A' > A$:

Owner’s strategy:
- If of high quality, then spend A' on advertising.
- If of low quality, then spend A on advertising.

Customer’s strategy:
- If advertising is at least A', then go to the restaurant.
- If advertising is less than A', then do not go to the restaurant.

Customer’s beliefs:
- If advertising is at least A', then the restaurant is high quality with probability 1.
- If advertising is less than A', then the restaurant is low quality with probability 1.

Starting with the customer’s beliefs, consistency requires that the customer believe the restaurant is high quality when she observes advertising of A' and is low quality when she observes advertising of A''. Thus, these beliefs are consistent. Turning to her strategy, first note that the customer finds it optimal to go to the restaurant if she believes it is high quality—realizing a payoff of 70 versus 0 from not going—and optimal not to go if she believes it is low quality (realizing a payoff of −20 versus 0). According to her beliefs, the restaurant is high quality if advertising is at least A'. As her strategy has her go to the restaurant if advertising is at least A', prescribed behavior is optimal. She believes it is of low quality when advertising falls below A'; again her strategy is optimal.

Finally, consider the owner’s strategy. If the restaurant is of high quality, the payoff from advertising A is $30 - A$ when $A \geq A'$ and zero when $A < A'$. Hence, advertising A' is optimal if and only if $A' < 30$. When the restaurant is of low quality, the payoff from advertising A is $15 - A$ when $A \geq A'$ and zero when $A < A'$. Hence, advertising A'', when $A'' < A'$, is optimal if and only if $A'' = 0$ and $A' \geq 15$. That is, if $A' < 15$, then the restaurant earns a higher payoff (of $15 - A'$) by advertising A' than by advertising A'' (which results in a payoff of $-A''$). And if advertising A' means no customers are going to come—so the payoff is $-A''$—then optimality requires $A'' = 0$. There is no point in advertising if it doesn’t deliver any customers. In sum, this is a separating perfect Bayes-Nash equilibrium if and only if $A'' = 0$ and $15 \leq A' \leq 30$. Note that advertising provides no direct information. Rather it is a signal of a restaurant’s quality. A high-quality restaurant is willing to advertise more to induce a customer to try its food because it knows the customer will return in the future.

b. At a separating PBNE, what is the maximum amount of advertising that a restaurant conducts? What is the minimum amount?

ANSWER: With this separating equilibrium, advertising cannot exceed 30 and cannot be less than 15. If it exceeds 30, then a high-quality restaurant would prefer not to advertise at all. If it is less than 15, then the low-quality restaurant would imitate the high-quality restaurant.
c. Find a pooling PBNE.

ANSWER: Consider the following separating strategy profile.

Owner's strategy:

If restaurant is of high quality, then spend \(A^o \) on advertising.
If restaurant is of low quality, then spend \(A^o \) on advertising.

Customer's strategy:

If advertising is at least \(A^o \), then go to the restaurant.
If advertising is less than \(A^o \), then do not go to the restaurant.

Customer's beliefs:

If advertising is at least \(A^o \), then the restaurant is high quality with probability \(\frac{1}{2} \).
If advertising is less than \(A^o \), then the restaurant is high quality with probability \(p \).

Since the customer's beliefs are the same as her prior beliefs when \(A = A^o \), beliefs are consistent. Given those beliefs, it is optimal to go to the restaurant when \(A \geq A^o \) if and only if:

\[
\frac{1}{2} \times 70 + \frac{1}{2} \times (-20) \geq 0,
\]

where the left-hand expression is the expected payoff from going, which equals 25, and the right-hand expression is the payoff from not going. This inequality holds. It is optimal not to go to the restaurant when \(A < A^o \) if and only if

\[
p \times 70 + (1 - p) \times (-20) \leq 0,
\]

\[
p \leq \frac{2}{9}.
\]

Thus, we must have \(p \leq \frac{2}{9} \). For the restaurant, it either wants to advertise \(A^o \) (the minimum amount necessary to induce a customer to come) or zero. The former yields a higher expected payoff when:

High-quality restaurant: \(30 - A^o \geq 0 \) or \(A^o \leq 30 \)
Low-quality restaurant: \(15 - A^o \geq 0 \) or \(A^o \leq 15 \).

Thus, we need \(A^o \leq 15 \).

d. At a pooling PBNE, what is the maximum amount of advertising?

ANSWER: The maximum amount of advertising at a pooling equilibrium is 15. If it exceeds 15, then the low-quality restaurant owner would prefer to advertise zero.