Class Announcements

- Assignment 5 posted
 - Due 3/9

- Database Assignment 2
 - Due 3/9
Aside: Network Effects

- The value of owning some products goes up if lots of other people have it too.
 - Examples?

- This phenomenon is called “network effects”

- How do standards influence network effects?
Network effects

Standards can harness network effects to the industry advantage

- Revenue = (market size) \times (market share)

Increases value to customer

Increases competition

- Only within confines of the standard
- But forces customer integration or services of a system integrator

Slide adapted from slides for *Understanding Networked Applications* by David G Messerschmitt. Copyright 2000. See copyright notice.
Why standards?

de jure are customer driven to reduce confusion and cost

de facto standards are sometimes the result of positive feedback in network effects

Customers and suppliers like them because they

- increase value
- reduce lockin

Governments like them because they

- promote competition in some circumstances
- May believe they can be used to national advantage
Open vs. Proprietary Standards

- **Open standard** - a standard that is well documented, unencumbered by intellectual property rights and restrictions, and available to any vendor.

- **What are the advantages?**

- **What are the disadvantages?**
Chapter 9

Applications and the Organization
Build vs. Buy?

Purchase off the Shelf
- less time and cost
- benefits of using a “standard” solution
- support available
 - must mold org to app
 - no potential for competitive advantage

Outsource
- developers not as familiar with org as you
+ more opportunity for customizing than off the shelf
- contractor may share knowledge with competitors
- contractor may have too much bargaining power

Make
+ most customizable of 3
+ easier iteration between conceptualization and development needed
 - most risky
 - org may lack competency to do it
Application Lifecycle

- It is important to think beyond acquiring an application
 - How do we come with the idea?
 - How do we architect it?
 - How do we implement?
 - How do we extend and maintain it?
- For this reason, the software engineering community came up with:
 - Application Lifecycle Model
Application Lifecycle

Stages:

1. Conceptualization
2. Analysis
3. Architecture Design
4. Development Evolution
5. Testing and Evaluation
6. Deployment
7. Operations, Maintenance, and Upgrade
1) Conceptualization

What is the vision?
- What are the objectives?
- What is the business case?

- EXAMPLE: Seatback system to sell seat swaps

- Business Case:
 - Increase revenue, passenger satisfaction
Conceptualization

- New in-flight seatback system
 - Sell upgrades and seat swaps
 - (People who want to get away from sick people ...)
 - Offer to exchange seats
2) Analysis

- Describe what the application will do.
- Enough info to allow “stakeholders” to review idea
- Don’t make highly detailed specifications
- Describe scenarios in which it is used
 - (Use Cases)
2) Analysis -- Example

- **Example: Scenario:**
 - **Seat Trade**
 - Passenger in 10C (aisle) offers to trade seat for frequent flyer miles
 - Business traveller in 20B (middle) offers to pay $500 to get aisle seat
3) Architecture Design

- Decompose the application into subsystems
 - Hardware, software
 - Try use commercial off the shelf subsystems
 - Try to use standard infrastructure layers
 - Operating system, network, middleware, etc.
Architecture

Wireless Link

Seat back devices

Wireless Link

servers

HEADQUARTERS

Airline Dataserver
3) Architecture Continued

- Define the functionality, interaction and interfaces of subsystems
- While doing this, consider
 - Scalability
 - How easily can we increase the number of users and maintain performance?
 - Extensibility
 - How easily can we add new features in the future?
 - Administration
 - How much work will it take by humans to keep this running properly?
4) Development Evolution

- Develop the details
 - Develop/program custom subsystems
 - Have contractor build outsourced pieces
 - Put together with off-the-shelf components

- Incremental
 - Start with simplest implementation and get it working
 - Later add more features.
5) Testing

- A must!

- If architected well, we can test subsystems independently.

- Alpha test – offline test of prototype

- Beta test – test in intended environment with cooperative users
 - Example – give HHC to initial group of FA’s
6) Deployment

- Convert from previous processes if necessary
 - Example: CISCO ERP (all at once)
 - Or, you could do incrementally

- Train users

- Data importation
 - (if necessary)
7) Operations, Maintenance, Upgrade

- Maintain Security
- Repair Problems
- Correct performance short comings (Cisco ERP)
- Add features
Application Lifecycle Model concluding remarks

- ALM rarely followed precisely
- Many times projects loop between stages
- ALM followed more closely in larger companies

Alternative:
- Rapid Iterative Prototyping
 (Cisco did some of this in the ERP case.)
The Database Approach to Data Management

- **Database:**
 - Collection of related files containing records on people, places, or things.
 - Prior to dig. DBs, business used paper files.

- **Entity:**
 - Generalized category representing person, place, thing on which we store info.
 - E.g., SUPPLIER, PART

- **Attributes:**
 - Specific characteristics of each entity:
 - SUPPLIER name, address
 - PART description, unit price, supplier
The Database Approach to Data Management

- **Relational database:**
 - Organize data into tables
 - One table for each entity:
 - E.g., (CUSTOMER, SUPPLIER, PART, SALES)
 - **Fields** (columns) store data representing an attribute.
 - Rows store data for separate **records**.
 - **Key field:** uniquely identifies each record.
 - **Primary key:**
 - One field in each table
 - Cannot be duplicated
 - Provides unique identifier for all information in any row
A relational database organizes data in the form of two-dimensional tables. Illustrated here is a table for the entity SUPPLIER showing how it represents the entity and its attributes. Supplier_Number is the key field.

Figure 5-1
The PART Table

<table>
<thead>
<tr>
<th>Part_Number</th>
<th>Part_Name</th>
<th>Unit_Price</th>
<th>Supplier_Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>137</td>
<td>Door latch</td>
<td>22.00</td>
<td>8259</td>
</tr>
<tr>
<td>145</td>
<td>Side mirror</td>
<td>12.00</td>
<td>8444</td>
</tr>
<tr>
<td>150</td>
<td>Door molding</td>
<td>6.00</td>
<td>8263</td>
</tr>
<tr>
<td>152</td>
<td>Door lock</td>
<td>31.00</td>
<td>8259</td>
</tr>
<tr>
<td>155</td>
<td>Compressor</td>
<td>54.00</td>
<td>8261</td>
</tr>
<tr>
<td>178</td>
<td>Door handle</td>
<td>10.00</td>
<td>8259</td>
</tr>
</tbody>
</table>

Figure 5-2

Primary Key

Foreign Key
Establishing relationships

- Entity-relationship diagram
 - Used to clarify table relationships in a relational database

- Relational database tables may have:
 - One-to-one relationship
 - One-to-many relationship
 - Many-to-many relationship
 - Requires creating a table (join table, Intersection relation) that links the two tables to join information
A Simple Entity-Relationship Diagram

This diagram shows the relationship between the entities SUPPLIER and PART.

Figure 5-3
The Database Approach to Data Management

- **Normalization**
 - Process of streamlining complex groups of data to:
 - Minimize redundant data elements.
 - Minimize awkward many-to-many relationships.
 - Increase stability and flexibility.

- **Referential integrity rules**
 - Used by relational databases to ensure that relationships between coupled tables remain consistent.
Sample Order Report

Order Number: 3502
Order Date: 1/15/2008

Supplier Number: 8259
Supplier Name: CBM Inc.
Supplier Address: 74 5th Avenue, Dayton, OH 45220

<table>
<thead>
<tr>
<th>Order_Number</th>
<th>Part_Number</th>
<th>Part_Quantity</th>
<th>Part_Name</th>
<th>Unit_Price</th>
<th>Extended_Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>3502</td>
<td>137</td>
<td>10</td>
<td>Door latch</td>
<td>22.00</td>
<td>$220.00</td>
</tr>
<tr>
<td>3502</td>
<td>152</td>
<td>20</td>
<td>Door lock</td>
<td>31.00</td>
<td>$620.00</td>
</tr>
<tr>
<td>3502</td>
<td>178</td>
<td>5</td>
<td>Door handle</td>
<td>10.00</td>
<td>$50.00</td>
</tr>
</tbody>
</table>

Order Total: $890.00

Figure 5-4
The Final Database Design with Sample Records

Figure 5-5

PART

<table>
<thead>
<tr>
<th>Part_Number</th>
<th>Part_Name</th>
<th>Unit_Price</th>
<th>Supplier_Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>137</td>
<td>Door latch</td>
<td>22.00</td>
<td>8259</td>
</tr>
<tr>
<td>145</td>
<td>Side mirror</td>
<td>12.00</td>
<td>8444</td>
</tr>
<tr>
<td>150</td>
<td>Door molding</td>
<td>6.00</td>
<td>8263</td>
</tr>
<tr>
<td>152</td>
<td>Door lock</td>
<td>31.00</td>
<td>8259</td>
</tr>
<tr>
<td>155</td>
<td>Compressor</td>
<td>54.00</td>
<td>8261</td>
</tr>
<tr>
<td>178</td>
<td>Door handle</td>
<td>10.00</td>
<td>8259</td>
</tr>
</tbody>
</table>

LINE_ITEM

<table>
<thead>
<tr>
<th>Order_Number</th>
<th>Part_Number</th>
<th>Part_Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>3502</td>
<td>137</td>
<td>10</td>
</tr>
<tr>
<td>3502</td>
<td>152</td>
<td>20</td>
</tr>
<tr>
<td>3502</td>
<td>178</td>
<td>5</td>
</tr>
</tbody>
</table>

ORDER

<table>
<thead>
<tr>
<th>Order_Number</th>
<th>Order_Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>3502</td>
<td>1/15/2008</td>
</tr>
<tr>
<td>3503</td>
<td>1/16/2008</td>
</tr>
<tr>
<td>3504</td>
<td>1/17/2008</td>
</tr>
</tbody>
</table>

SUPPLIER

<table>
<thead>
<tr>
<th>Supplier_Number</th>
<th>Supplier_Name</th>
<th>Supplier_Supplier</th>
<th>Supplier_Supplier</th>
<th>Supplier_Supplier</th>
<th>Supplier_Supplier</th>
<th>Supplier_Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>8259</td>
<td>CBM Inc.</td>
<td>74 5th Avenue</td>
<td>Dayton</td>
<td>OH</td>
<td>45220</td>
<td></td>
</tr>
<tr>
<td>8261</td>
<td>B. R. Molds</td>
<td>1277 Gandolly Street</td>
<td>Cleveland</td>
<td>OH</td>
<td>49345</td>
<td></td>
</tr>
<tr>
<td>8263</td>
<td>Jackson Components</td>
<td>8233 Micklin Street</td>
<td>Lexington</td>
<td>KY</td>
<td>56723</td>
<td></td>
</tr>
<tr>
<td>8444</td>
<td>Bryant Corporation</td>
<td>4315 Mill Drive</td>
<td>Rochester</td>
<td>NY</td>
<td>11344</td>
<td></td>
</tr>
</tbody>
</table>
This diagram shows the relationship between the entities SUPPLIER, ART, LINE_ITEM, and ORDER.

Figure 5-6
Database Management Systems

DBMS

- **Specific type of software for creating, storing, organizing, and accessing data from a database**
- **Separates the logical and physical views of the data**
 - **Logical view**: how end users view data
 - **Physical view**: how data are actually structured and organized
- **Examples of DBMS**: Microsoft Access, DB2, Oracle Database, Microsoft SQL Server, MySQL
Human Resources Database with Multiple Views

Figure 5-7
Operations of a Relational DBMS

• Select:
 • Creates a subset of all records meeting stated criteria

• Join:
 • Combines relational tables to present the server with more information than is available from individual tables

• Project:
 • Creates a subset consisting of columns in a table
 • Permits user to create new tables containing only desired information
The Three Basic Operations of a Relational DBMS

The select, project, and join operations enable data from two different tables to be combined and only selected attributes to be displayed.
Capabilities of Database Management Systems

- **Data definition capabilities:**
 - Specify structure of content of database.

- **Data dictionary:**
 - Automated or manual file storing definitions of data elements and their characteristics.

- **Querying and reporting:**
 - **Data manipulation language**
 - Structured query language (SQL)
 - Microsoft Access query-building tools
Illustrated here are the SQL statements for a query to select suppliers for parts 137 or 150. They produce a list with the same results as Figure 5-8.
An Access Query

Figure 5-11
Object-Oriented DBMS (OODBMS)

- Stores data and procedures that act on those data as objects to be retrieved and shared
- Better suited for storing graphic objects, drawings, video, than DBMS designed for structuring data only
- Used to manage multimedia components or Java applets in Web applications
- Relatively slow compared to relational DBMS
- Object-relational DBMS: provide capabilities of both types
Data Warehouses

• **Data warehouse:**
 - Database that stores current and historical data for decision makers
 - Consolidates and standardizes data from many systems,
 - Data can be accessed but not altered

• **Data mart:**
 - Subset of data warehouses that is highly focused and isolated for a specific population of users
Components of a Data Warehouse

- Operational Data
- Customer Data
- Manufacturing Data
- Historical Data
- External Data

Extract and Transform

Data Warehouse

Data Access and Analysis
- Queries and reports
- OLAP
- Data mining

Information Directory

Figure 5-12