The Database Approach to Data Management

- **Database:**
 - Collection of related files containing records on people, places, or things.
 - Prior to digitizing DBs, business used paper files.

- **Entity:**
 - Generalized category representing person, place, thing on which we store info.
 - E.g., SUPPLIER, PART

- **Attributes:**
 - Specific characteristics of each entity:
 - SUPPLIER name, address
 - PART description, unit price, supplier
• Relational database:
 • Organize data into tables
 • One table for each entity:
 • E.g., (CUSTOMER, SUPPLIER, PART, SALES)
 • Fields (columns) store data representing an attribute.
 • Rows store data for separate records.
 • Key field: uniquely identifies each record.
 • Primary key:
 • One field in each table
 • Cannot be duplicated
 • Provides unique identifier for all information in any row
A relational database organizes data in the form of two-dimensional tables. Illustrated here is a table for the entity SUPPLIER showing how it represents the entity and its attributes. Supplier_Number is the key field.

Figure 5-1
The PART Table

<table>
<thead>
<tr>
<th>Part_Number</th>
<th>Part_Name</th>
<th>Unit_Price</th>
<th>Supplier_Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>137</td>
<td>Door latch</td>
<td>22.00</td>
<td>8259</td>
</tr>
<tr>
<td>145</td>
<td>Side mirror</td>
<td>12.00</td>
<td>8444</td>
</tr>
<tr>
<td>150</td>
<td>Door molding</td>
<td>6.00</td>
<td>8263</td>
</tr>
<tr>
<td>152</td>
<td>Door lock</td>
<td>31.00</td>
<td>8259</td>
</tr>
<tr>
<td>155</td>
<td>Compressor</td>
<td>54.00</td>
<td>8261</td>
</tr>
<tr>
<td>178</td>
<td>Door handle</td>
<td>10.00</td>
<td>8259</td>
</tr>
</tbody>
</table>

Figure 5-2
• Establishing relationships
 • Entity-relationship diagram
 • Used to clarify table relationships in a relational database
 • Relational database tables may have:
 • One-to-one relationship
 • One-to-many relationship
 • Many-to-many relationship
 • Requires creating a table (join table, Intersection relation) that links the two tables to join information
A Simple Entity-Relationship Diagram

This diagram shows the relationship between the entities SUPPLIER and PART: One-to-many.

Figure 5-3
• **Normalization.** Process of streamlining complex groups of data (especially those with many-to-many relationship) to:
 - Minimize redundant data elements.
 - Minimize awkward many-to-many relationships.
 - Increase stability and flexibility.

• **Referential integrity rules**
 - Used by relational databases to ensure that relationships between coupled tables remain consistent.
 - Idea: not add a record to the table with the foreign key unless there is a corresponding record in the linked table
 - E.g, Not add supplier # 8266 to PART unless there is a 8266 in SUPPLIERS
This diagram shows the relationship between the entities SUPPLIER, ART, LINE_ITEM, and ORDER.

Figure 5-6
The Final Database Design with Sample Records

Figure 5-5

<table>
<thead>
<tr>
<th>PART</th>
<th>LINE_ITEM</th>
<th>ORDER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part_Number</td>
<td>Part_Name</td>
<td>Unit_Price</td>
</tr>
<tr>
<td>137</td>
<td>Door latch</td>
<td>22.00</td>
</tr>
<tr>
<td>145</td>
<td>Side mirror</td>
<td>12.00</td>
</tr>
<tr>
<td>150</td>
<td>Door molding</td>
<td>6.00</td>
</tr>
<tr>
<td>152</td>
<td>Door lock</td>
<td>31.00</td>
</tr>
<tr>
<td>155</td>
<td>Compressor</td>
<td>54.00</td>
</tr>
<tr>
<td>178</td>
<td>Door handle</td>
<td>10.00</td>
</tr>
</tbody>
</table>

SUPPLIER					
Supplier_Number	Supplier_Name	Supplier_Street	Supplier_City	Supplier_State	Supplier_Zip
8259	CBM Inc.	74 5th Avenue	Dayton	OH	45220
8261	B. R. Molds	1277 Gandolly Street	Cleveland	OH	49345
8263	Jackson Components	8233 Micklin Street	Lexington	KY	56723
8444	Bryant Corporation	4315 Mill Drive	Rochester	NY	11344
Sample Order Report

Order Number: 3502
Order Date: 1/15/2008

Supplier Number: 8259
Supplier Name: CBM Inc.
Supplier Address: 74 5th Avenue, Dayton, OH 45220

<table>
<thead>
<tr>
<th>Order_Number</th>
<th>Part_Number</th>
<th>Part_Quantity</th>
<th>Part_Name</th>
<th>Unit_Price</th>
<th>Extended_Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>3502</td>
<td>137</td>
<td>10</td>
<td>Door latch</td>
<td>22.00</td>
<td>$220.00</td>
</tr>
<tr>
<td>3502</td>
<td>152</td>
<td>20</td>
<td>Door lock</td>
<td>31.00</td>
<td>620.00</td>
</tr>
<tr>
<td>3502</td>
<td>178</td>
<td>5</td>
<td>Door handle</td>
<td>10.00</td>
<td>50.00</td>
</tr>
</tbody>
</table>

Order Total: $890.00

Figure 5-4
DBMS

- Specific type of software for creating, storing, organizing, and accessing data from a database
- Separates the logical and physical views of the data
 - **Logical view**: how end users view data
 - **Physical view**: how data are actually structured and organized
- **Examples of DBMS**: Microsoft Access, DB2, Oracle Database, Microsoft SQL Server, MySQL
Human Resources Database with Multiple Views

Figure 5-7
Operations of a Relational DBMS

• Select:
 • Creates a subset of all records meeting stated criteria

• Join:
 • Combines relational tables to present the server with more information than is available from individual tables

• Project:
 • Creates a subset consisting of columns in a table
 • Permits user to create new tables containing only desired information
The Three Basic Operations of a Relational DBMS

The select, project, and join operations enable data from two different tables to be combined and only selected attributes to be displayed.
Capabilities of Database Management Systems

• Data definition capabilities:
 • Specify structure of content of database.

• Data dictionary:
 • Automated or manual file storing definitions of data elements and their characteristics, e.g., names, descriptions, size, type, format, etc.

• Querying and reporting:
 • Data manipulation language (add, change, delete and retrieve data)
 • E.g., Structured query language (SQL)
 • E.g., Microsoft Access query-building tools
Example of an SQL Query

SELECT PART.Part_Number, PART.Part_Name, SUPPLIER.Supplier_Number, SUPPLIER.Supplier_Name
FROM PART, SUPPLIER
WHERE PART.Supplier_Number = SUPPLIER.Supplier_Number AND Part_Number = 137 OR Part_Number = 150;

Illustrated here are the SQL statements for a query to select suppliers for parts 137 or 150. They produce a list with the same results as Figure 5-8.

Figure 5-10
Online Analytical Processing (OLAP)

- Supports multidimensional data analysis
 - Enable users to view same data in different ways using multiple dimensions
 - Dimension can be — product, pricing, cost, region, or time period
 - E.g., comparing sales in East in June versus May and July
Figure 5-14
Multidimensional Data Model
Data Mining

- Finds **hidden** patterns and relationships in large databases
- **Types of information obtainable from data mining**
 - **Associations**: occurrences linked to single event, e.g., chip & coke
 - **Sequences**: events linked over time, e.g., purchase new appliance with the first two weeks of new house
 - **Classifications**: patterns describing a group an item belongs to, e.g., discover characteristics of customers who are likely to leave the services.
 - **Clusters**: discovering as yet unclassified or not defined groupings
 - **Forecasting**: uses series of values to forecast future values through the pattern of data.
Data Mining

- **One popular use of data mining**: identifying profitable customers

- **Predictive analysis**:
 - Uses historical data, and assumptions about future conditions to predict outcomes of events
 - E.g. such the probability a customer will respond to an offer or purchase a specific product
• **Text Mining**

 - Unstructured data (mostly text files) accounts for 80 percent of an organization’s useful information.

 - Text mining -- extract key elements from, discover patterns in, and summarize large unstructured data sets.

• **Web Mining**

 - Discovery and analysis of useful patterns and information from the Web