NLP 201: Natural Language Processing 1
Introduction

Jeffrey Flanigan
October 1, 2020

University of California Santa Cruz
jmflanig@ucsc.edu
Plan for today

- Administrative information
- Introductions
- Begin introduction to NLP
Your Instructors

Jeff (instructor):

- UCSC professor since 2019, Ph.D. from CMU in 2018
- Research: machine learning for structured problems in NLP, deep learning, semantics in NLP

TAs:

- Geetanjali Rakshit
- Rongwen Zhao
- Zekun Zhao (shared among the classes)

For each assignment, either Geetanjali and Rongwen will be responsible for questions (as well as Jeff)
• Piazza - please sign up
• Course website:
 https://courses.soe.ucsc.edu/courses/nlp201/Fall20/01
• Canvas (for exams, assignment turn-in, and some materials)
• Classes will be recorded
• Assignments will be done either locally or on Google Colab
• We accommodate disabilities. If you require DRC accommodations (https://drc.ucsc.edu/), please let me know ASAP
Outline of NLP 201

1. Introduction to NLP
2. Text classifiers, probabilistic language models
3. Sequence models
4. Syntax and parsing
5. TBD

Don’t expect a detailed calendar since plans may change as we go. This year-long series (NLP 201-3) is new, with no comparable course offering anywhere in the world (as far as I know). We will be developing the course materials as we go along.

If you have taken my undergraduate NLP course CSE 143 Winter 2020, the first quarter may be familiar, but at a slower, more in-depth pace.
Evaluation

- 4 assignments (A1–4), completed individually (60%)
- Midterm exam (20%), towards the middle of the quarter on Canvas
- Final exam (20%), to take place at the end of the quarter on Canvas
Let’s turn on our cameras
We’ll go around the room and share one of these
 • What you hope to learn about NLP *OR*
 • What excites you most about NLP *OR*
 • An experience you’ve had with NLP that you enjoyed
(Short 3 min break)
What is Natural Language Processing (NLP)?

• The set of methods for making human language accessible to computers (Eisenstein, 2018).

• Why do we want this? Besides the fact that this is an interesting problem...
What is Natural Language Processing (NLP)?

- The set of methods for making human language accessible to computers (Eisenstein, 2018).
What is Natural Language Processing (NLP)?

- The set of methods for making human language accessible to computers (Eisenstein, 2018).
- Why do we want this? *Besides the fact that this is an interesting problem*
Over the history of computers, we have been continually striving to improve our mode of interaction with computers. Transition: this capability would allow us to solve many useful tasks. Didn’t stop people from dreaming: NLP has a long history.
One of earliest uses of computers (1950s) was for translation (Georgetown-IBM system). MT dominated early work on NLP – The top NLP conference (ACL) was originally called the Association for Machine Translation and Computational Linguistics.
NLP Application: Question Answering

- What does “divergent” mean?
- What year was Abraham Lincoln born?
- How many states were in the United States that year?
- How much Chinese silk was exported to England in the end of the 18th century?
- What do scientists think about the ethics of human cloning?
NLP has many end-user tasks (downstream tasks or applications)

- Machine translation
- Summarization
- Question answering
- Conversational agents
- Search (information retrieval) Google, Bing, etc. Almost it’s own field
- Recommender systems Netflix prize
- Document classification Format of many different tasks. Example: spam filtering – is this email spam or not. Doesn’t have to be at the level of documents, also sentence classification. Example: automated fact checking
NLP has many end-user tasks (downstream tasks or applications)

- Machine translation
- Summarization
- Question answering
- Conversational agents
- Search (information retrieval) Google, Bing, etc. Almost it’s own field
- Recommender systems Netflix prize
- Document classification Format of many different tasks. Example: spam filtering – is this email spam or not. Doesn’t have to be at the level of documents, also sentence classification. Example: automated fact checking

These two tasks are supertasks. All other tasks can be solved using either of these tasks. (the “NP-hard” tasks of NLP) There is one other super-task: language modeling (predicting the probability of the next word) (todo: cite richard socher)
Downstream tasks sometimes benefit from intermediate tasks input from various sources:

- Knowing a word’s sense (i.e. duck – animal vs duck – action) could help translate it. This is **sense disambiguation**. Different senses of the same word often have different translations.
- Knowing if a word is a verb or noun (its part of speech) could help translate it (duck – noun vs duck – verb). This is **part-of-speech tagging**.
- Splitting text into sentences is often required before processing. This is **sentence segmentation**.
- Deciding what should count as a word ($100 vs $100 or it’s vs it’s) (tokenization) usually has a very large effect on performance. **Can also do character-level, usually not as good**
Examples of intermediate tasks

- Tokenization
- Language modeling
- POS tagging
- Synactic parsing
- Entity recognition
- Entity linking
- Relation extraction
- Semantic role labeling
- Semantic parsing

Some intermediate tasks are also downstream tasks, such as entity recognition and relation extraction (also language modeling, supertask!?)
The traditional NLP pipeline

1. Tokenization
2. Morphological analysis
3. Part-of-speech tagging
4. Syntactic Parsing
5. Semantic Parsing
6. Downstream task: QA, summarization, etc

With deep learning, sometimes tasks are done end-to-end, without any intermediate steps.
Large growth in NLP in recent years
NLP applications are now commonplace

- Spam email filtering
- Google translate
- Built-in recommender systems (in Amazon, Ebay, Netflix, etc)
- Siri, Amazon Alexa
- Auto-completion suggestions
- Grammar checking
- Automatic essay grading (used by ETS)
- Inappropriate social media post filtering
- Fake news detection
- Lots we probably don’t even realize!
Ethics

- Can run into issues like censorship, bias, security, etc
- Active area of research
• Speech (both recognition and generation) are separate, not an NLP tasks. Some cross-over, but largely different methods. Also different conferences, research groups.

• Machine learning (computers learn from experience or examples). As we will see, modern NLP uses machine learning extensively. Adwait (our executive director), and Lyn (our program director), were both pioneers of applying ML to NLP. To the uninitiated, NLP looks like applied machine learning. But, knowledge of the application domain (language) is critical.

• Linguistics (the study of language). Knowing how language works is important for modeling it well.

• Computational linguistics (CL)
 • Sometimes synonymous with NLP to a rough approximation.
 • In practice, CL often has larger emphasis on linguistics and linguistic theories. CL degree programs often have a different curriculum than NLP degree programs.
Jacob Eisenstein. *Natural Language Processing*. 2018. URL