Last Time:
\[K_{\hat{x}} = E \left[(\hat{x} - \hat{M}_x) (x - M_x)^T \right] \]

Properties:
1) \(K_{\hat{x}} \) is symmetric
2) \(K_{\hat{x}} \) is positive semi-definite

(Form: \(\hat{u}^T K_{\hat{x}} \hat{u} \geq 0 \))

Random vectors \(\hat{x}, \hat{y} \)
\[K_{\hat{x}\hat{y}} = E \left[(\hat{x} - \hat{M}_x) (\hat{y} - \hat{M}_y)^T \right] \]

This is called a cross-covariance matrix

Moment Generating Function
\[g_{\hat{x}}(s) = E[e^{s^T \hat{x}}] \]
\[E \left[e^{s^T \hat{x}} \right] = \int e^{s^T x} f_{\hat{x}}(x) \, dx \]

Functions of a Random Vector

Suppose \(\hat{x} \) has a density \(f_{\hat{x}} \)
and \(h: \mathbb{R}^n \to \mathbb{R}^n \) and is one-to-one
let \(\hat{z} := h(\hat{x}) \)

What is the density of \(\hat{z} \)
\[p \left(\frac{\tilde{z}}{z} \in B(z) \right) = \int_{B(z)} f_{\tilde{z}}(\tilde{z}) \, d\tilde{z} = f_{\tilde{z}}(\tilde{z}) \cdot \text{area} \left(B(z) \right) \]

\[= p \left(\tilde{z} \in h^{-1}(B(z)) \right) \]

\[= p \left(\tilde{x} \in h^{-1}\left(B(z) \right) \right) \]

\[\equiv f_{\tilde{x}}(h^{-1}(z)) \cdot \frac{\text{area} \left(h^{-1}(B(z)) \right)}{\text{area} \left(B(z) \right)} \]

Note

\[h^{-1}(\tilde{z} + \epsilon) = \left[\frac{\partial h^{-1}(\tilde{z})}{\partial \tilde{z}} \right] \epsilon + h^{-1}(\tilde{z}) \]

\[h^{-1}(\tilde{z} + \epsilon) = \left[\frac{\partial h^{-1}(\tilde{z})}{\partial \tilde{z}} \cdots \frac{\partial h^{-1}(\tilde{z})}{\partial \tilde{z}_n} \right] \epsilon + h^{-1}(\tilde{z}) \]
\(J := \text{Jacobian matrix of } h^{-1}(c) \)

\[f_\hat{c}(z) = f_x(h^{-1}(z)) \left| \det(J(\hat{c})) \right| \]

\[\uparrow \quad J \text{ is Jacobian of } h^{-1}(c) \]

Suppose \(J^* \) is Jacobian of \(h(c) \)

We can show this:

\[f_\hat{c}(z) = f_x(h^{-1}(z)) \left| \det(J^*(h^{-1}(z))) \right|^{-1} \]

Gaussian Random Vectors

\(W = N(0, 1) \) means that

\[f_W(w) = \frac{1}{\sqrt{2\pi}} e^{-w^2/2} \]

Why give attention to Gaussian:

1) They are common
2) They are easy to work with
 - Easy conditional density and expectation calculations
 - Preserved by linear systems
3) Elegant solutions to Kalman and Wiener Filter problems.
why common?

Central Limit Theorem

Roughly, suppose $X_i = 1, \ldots, n$ are independent and identically distributed (i.i.d.)

Then

$$
\frac{1}{\sigma \cdot \sqrt{n}} \sum_{i=1}^{n} (X_i - \mu) \sim N(0, 1) \quad N = E[X_i]
$$

$$
\frac{1}{n} \sum_{i=1}^{n} (X_i - \mu) \to 0
$$

$\sigma^2 = var(X_i)$

In general, let

$$X = N(\mu, \sigma^2)$$

Mean:

$$f_X(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

A collection $\{X_1, \ldots, X_n\}$ is said to be *jointly Gaussian* if

$$\text{for all } \mathbf{a} \in \mathbb{R}^n, \sum_{i=1}^{n} a_i X_i \text{ is Gaussian}$$

Example of individually but not jointly Gaussian

Let X be $N(0, 1)$

Let Y be $\begin{cases} X & \text{if } |X| \leq 1 \\ -X & \text{if } |X| > 1 \end{cases}$, Y is Gaussian
But

\[\frac{1}{2} = X + Y = \begin{cases} 2X & \text{if } |X| \leq 1 \\ 0 & \text{if } |X| > 1 \end{cases} \]

Thus \(X + Y \) is not \(JG \)

Let \(\tilde{X} \in \mathbb{R}^n \) be vector with iid components \(X_i \sim N(0, 1) \). Then \(\tilde{X} \) is a \(JG \) random vector.

Proof: Let \(Y = a^T \tilde{X} \)

\[g_Y(s) = E \left[e^{s^T \tilde{X}} \right] \]

\[= \prod_{i=1}^{n} E \left[e^{s_i X_i} \right] \]

\[= \prod_{i=1}^{n} \frac{e^{s_i^2 \sigma^2 / 2}}{\sqrt{2\pi \sigma^2}} \]

\[= e^{\frac{1}{2} s^2 \sigma^2} \]

\[\sigma^2 = \frac{\sum a_i^2}{m} \]

Yes \(Y \) is Gaussian

Thus \(\tilde{X} \) is \(JG \)
Definition: We say \(\hat{X} = N(\hat{\mu}, K\hat{X}) \) if \(\hat{X} \) is \(\mathcal{C} \)-
with covariance \(K\hat{X} \), and mean \(\hat{\mu} \).

Fact: \(g\hat{X}(s) = \exp(s^T\hat{\mu} + \frac{1}{2} s^TK\hat{X}s) \)

Proof: \(g\hat{X}(s) = E[\exp(s^T\hat{X})] \)

let \(Y^T = s^T\hat{X} \)

\[= E[\exp(Y)] \]

\[= g_Y(1) = C[\frac{\hat{\mu}^T Y + \frac{1}{2}s^T\sigma_Y^2}{s^T}] \]

\(\sigma_Y^2 \): \(\text{var}(Y) = \text{var}(s^T\hat{X}) \)

\[= \sqrt{E[s^T\hat{X}X^T]} \]

\[= E[st(\hat{X} - \hat{\mu})(X - \hat{\mu})^T] \]

\[= s^TK\hat{X}s \]

\(\hat{Y} = E[s^T\hat{X}] = s^T\hat{\mu} \)

Substitute \(g\hat{X}(s) = \exp(s^T\hat{\mu} + \frac{1}{2} s^TK\hat{X}s) \)

Corollary: Joint distribution of \(\mathbf{U} = \sqrt{\frac{1}{2}}\hat{X} \) is specified completely by \(\hat{\mu} \) and \(K\hat{X} \).

Let \(\hat{w} = [w_1, \ldots, w_m]^T \) consist of iid Gaussian r.v.s with distribution \(NCO, 1) \)
Then \(f_w(\tilde{w}) = \frac{1}{(2\pi)^{m/2}} \exp \left[-\frac{\tilde{w}^T \tilde{w}}{2} \right] \) is joint pdf.

Suppose \(\tilde{z} = A \tilde{w} + \tilde{\nu} \) then \(\tilde{z} \sim N(\nu, AA^T) \).

Proof: \(\tilde{z} \) is JG because its elements are lin. combs. of elements of \(\tilde{w} \):

\[
E[\tilde{z}] = E[A \tilde{w} + \tilde{\nu}] = A \cdot E[\tilde{w}] + E[\tilde{\nu}] = \nu
\]

\[
K_{\tilde{z}} = E[(A \tilde{w})(A \tilde{w})^T] = A \cdot E[\tilde{w} \tilde{w}^T] A^T
\]

\[
= A \cdot E[w_i^2 w_i w_i] A^T = A \cdot E[w_i^2] E[w_i] A^T = A \cdot I \cdot A^T
\]

\[
= AA^T
\]
Theorem

As a zero mean with arbitrary covariance matrix \(k_z \) and mean \(\tilde{w}_z \) can be constructed by taking

\[
\tilde{z} = A\tilde{w} + N
\]

for some \(A \), and \(N \)

Proof: Let

\[
K_z = P \Lambda P^*
\]

\(P = \) matrix of orthonormal eigenvectors,
\(\Lambda = \) diagonal matrix of
\(\) eigenvalues.

Let \(A = P \Lambda \sqrt{\tilde{w}_z} \)

Covariance \((A\tilde{w} + N) = E[A\tilde{w}\tilde{w}^T A^T]\)

\[
= A E[\tilde{w}\tilde{w}^T] A^T
\]

\[
= P \Lambda^{1/2} I \Lambda^{1/2} P^T
\]

\[
= K_z
\]

\[
f_\tilde{z}(z) = \left| \det(CA^{-1}) \right| f_\tilde{w}(CA^{-1}(z - N)) \quad A^T \hat{A}
\]

\[
= \frac{1}{(2\pi)^{N/2} \det(K_z)^{1/2}} \exp \left[-\frac{1}{2} (z - \hat{A})^T K_z^{-1} (z - \hat{A}) \right]
\]