Renewal theory

\[T_1, T_2, T_3, \ldots \text{ iid with dist FC } \]

\[T_n = e_1 + \cdots + e_n \]

\[N(t) = \min \{ n : T_n \leq t \} \]

\[I = \{ X > 0 \} \]

\[E_X = \int_0^\infty P(X > t) \, dt \]

\[X = \int_0^\infty 1(X > t) \, dt \]

\[E_X = \int_0^\infty P(X > t) \, dt \]

\[E[N(t)] = \sum_{n=1}^{\infty} P(N(t) = n) = \sum_{n=1}^{\infty} P(T_n \leq t) \]

** Wald's Equation:** Let \(S_n = X_1 + X_2 + \cdots + X_n \) where \(X_1, X_2, \ldots, X_n \) i.i.d. \(N = EX_i \).

If \(N \) is a stopping time with \(EN < \infty \),

\[E S_N = N \cdot EN \]

\[S_N = \sum_{m=1}^{\infty} X_m 1(N \geq m) \]

the event \(N < m \) can be determined by time \(m-1 \).

Thus \(1(N \geq m) \) is independent of \(X_m \).

\[E S_N = \sum_{m=1}^{\infty} E X_m E 1(N \geq m) \]

\[= N \sum_{m=1}^{\infty} P(N \geq m) = N \cdot EN \]

Bounds on \(EN(t) \):

\[N = \min \{ n : T_n \leq t \} \text{ is a stopping time} \]

\[= N_{(t)} + 1 \]

is \(N(t) \) a stopping time?

No!
\[E \left(T_{\text{nu}} + 1 \right) = \nu E(N_{Ct} + 1) \]

\[\epsilon < \nu(E N_{Ct} + 1) \]

\[E N_{Ct} + 1 \geq \frac{\epsilon}{\nu} \]

Suppose \(\epsilon_i < m \)

\[E \left[N_{Ct} + 1 \right] \leq \frac{C^* + m}{\nu} \]
Strong law for renewal process: let $N = E\xi$ (mean inter-arrival time)

$$\frac{N(t)}{t} \to \frac{1}{N} \quad \text{as} \quad t \to \infty$$

w.p. one (almost surely)

Proof

$$\frac{T_n}{n} = \frac{2(2t)}{n} \to N \quad \text{a.s.}$$

By definition,

$$t_{NCE} \leq t < t_{NCE+1}$$

$$\frac{T_{NCE}}{N(t)} \leq \frac{t}{N(t)} \leq \frac{T_{NCE+1}}{N(t)} \to \frac{N(t)+\varepsilon}{N(t)} = \frac{1}{N}$$

Thus, $\frac{N(t)}{t} \to \frac{1}{N}$

Next goal was to show

$$\frac{t}{N(t)} \to \frac{1}{N}$$

Example let $Y_t = \begin{cases} c + t & \text{if} \quad U \leq \frac{te}{C} \\ c & \text{otherwise} \end{cases}$

U uniform on $[0, 1]$

$$Y_t \to c \quad \text{w.p.} \quad \frac{1}{t} \quad \text{as} \quad t \to \infty$$

$$E[Y_t] = (c + t) \cdot \frac{1}{t} + c \cdot (1 - \frac{1}{t}) \to c + 1$$

Thus, $Y_t \to c$ does not imply $EY_t \to c$.
\[EN(c) + 1 \geq \frac{c}{\nu} \]

\[\lim_{t \to \infty} \inf \frac{EN(c)}{t} = \frac{1}{\nu} \quad (1) \]

\[\overline{t_i} = \min(t_{ij}, m) \text{ truncated interarrival time} \]

\[\overline{t_n} = \overline{t_1} + \ldots + \overline{t_n} \]

\[N_m(t) = \overline{t_t} \]

\[EN(c) \leq EN(t) + 1 \leq \frac{t + m}{\nu} \]

\[\limsup_{t \to \infty} \frac{EN(c)}{t} \leq \frac{1}{\nu} \quad (8) \]

\[\lim_{t \to \infty} \frac{E(N_c)}{t} = \frac{1}{\nu} \quad (8) \]

\[1 + 2 = \frac{E(N_c)}{t} = \frac{1}{\nu} \]

Rewards

Let \(r_i \) be rewards at renewal \(i \)

Assume \(\{r_i\} \) are i.i.d.

\[R(c) = \sum_{i=1}^{N(c)} r_i \]

\[\frac{R(c)}{t} = \frac{N(c)}{t} \left(\frac{1}{N(c)} \sum_{i=1}^{N(c)} r_i \right) \to \frac{EC_c}{E_t(c)} \]
Consider an orbiting queue

\[X_s = \# \text{ Customers at time } t \]

\[L = \lim_{t \to \infty} \frac{1}{t} \int_0^t X_s \, ds \]

\[W = \lim_{n \to \infty} \frac{1}{n} \sum_{m=1}^n W_m \]

The customer \(m \) spends in system

\[\lambda_m = \lim_{t \to \infty} \frac{N_m(t)}{t} \text{ average arrival rate} \]

Little's result

\[L = \lambda_m W \]

M/M/1 Queue

\[U_t = \text{ sum of remaining service times in system (workload)} \]

Suppose a customer \(w \) has \(Y \) units of service time remaining pay \(s \) to customer \(y \)

Let \(Y_g \) = Average total payment by each customer

Average work load satisfies

\[V = \lambda Y \]

\[Y = E[S_i] \cdot W_q + E \left[\frac{S_i^2}{2} \right] \]

\[Y = \lambda E[S_i] \cdot W_q + E \left[\frac{S_i^2}{2} \right] \]

PASTA

\[W = W_q \]

\[W_a = E[S_i] \cdot W_q + E \left[\frac{S_i^2}{2} \right] \]

\[W_q = \frac{\lambda E[S_i]^2}{2(1 - \lambda E[S_i])} \]

\[W = W_a + E[S_i] \]

\[L = \frac{W}{\lambda} \]