Research, Startups, and Risk

Brad Smith
Overview

• Why startups matter in UC.
• Cenus… a startup howto (or hownot:)
 – Technology
 – Product development
 – Funding
• Managing risk.
What is Purpose of UC?

- Research
- Teaching
- Public Service.
- Creation
- Dissemination
- Application…
- …of new knowledge.

Important goal of applying new knowledge is...

Technology transfer is important function of UC.

Startups are an important vehicle for tech transfer.

Opinion: students are the best agents of tech transfer!
UC in World of Higher Ed

• Carnegie Foundation (www.carnegiefoundation.org) classifies degree-granting institutions in the U.S.
 – Tribal
 – Special Focus
 – Associate
 – Baccalaureate
 – Master’s
 – Doctorate
 • Doctoral/Research
 • Research University (high research activity)
 • Research University (very high research activity) - “R1”

• In general, UCs are “R1s”.
• Opinion: R1’s are knowledge engines for industry and society.
Importance of UC as R1?

- There are 4,391 degree-granting colleges or universities in the U.S.
- How many are R1s?
 - 96 (2.2%) Research Universities (very high research activity).
 - 63 (1.4%) of these are public.
- UCSC’s role
 - 1 of < 2.2% dedicated to expanding human knowledge.
 - 1 of < 1.4% who serve this role solely for the public good.
 - 8 of which are UC’s that are near/at the top of this list.

- **Tech transfer is core to UC, and UC is one of few doing this**
- **Opinion: UC’s tech transfer role is incredibly important!**
Cenus
Summary

• Startup called Cenus Technologies
• Content routing
• Chief Architect from 2000-2002
• Based on research with Prof. JJ Garcia-Luna
• Have not been involved since ~2003
• Cenus is still in business…
Cenus
The Technology
The Internet

• What is an invariant of the Internet?
• It grows.
Client-Server

• Clients communicate directly with server
• All requests traverse the Internet
• Average latency is half the Internet’s diameter
• As the Internet grows this becomes painful
 – High latency → loose customers
 – High jitter → poor streaming performance
 – Single-point of overload and failure
Client Server in the Internet

• What’s the problem?
• Performance always gets worse.
Problem with Client-Server

• Clients communicate directly with server
• All requests traverse the Internet
• Average latency is half the Internet’s diameter
• As the Internet grows this becomes painful
 – High latency \rightarrow loose customers
 – High jitter \rightarrow poor streaming performance
 – Single-point of overload and failure
Solution - Caching

• Store copy of fetched data “locally”
• Satisfy future requests from cache
• Previous uses: memory, disk
• Effectiveness depends on
 – Locality of reference (requested object requested recently?)
 – Differential in access times (how far to the server?)
 – Request rate (how many clients does cache see requests for?)
 – …only control last one
Jim Gray - Storage Latency: How Far Away is the Data?

Andromeda

Tape /Optical Robot

10^9

Disk

10^6

Memory

100

On Board Cache

2

On Chip Cache

1

Registers

Springfield

This Campus

This Room

My Head

Pluto

2,000 Years

1.5 hr

10 min

1 min

October 14, 2010

TIM 101
Web Caching

- Clients talk to cache
- Cache fetches content for client
- Subsequent requests satisfied by cached content
- Weak cache coherency (TTL)
- Goals – improve performance, save external bandwidth

Effectiveness of cache measured by hit rate
- *is a function of request rate…*
- … increase chance that content requested recently enough.
Standalone Caches not Effective

- Need very high request rate for effective caching
- Place caches high up network hierarchy
- Expensive
 - Big cache machine
 - High bandwidth cache connectivity
- Same problems - latency, jitter, reliability
- From many loaded web servers…
- …to one loaded cache server
Hierarchical Caching

• Attempts to resolve hit rate/performance trade-off
• Organize caches in hierarchy
• Only root cache fetches content from server
• In effect, aggregates request streams over set of caches
Results

• Performance is worse(!)

• Multiple caching hops exacerbates…
 – Latency
 – Jitter
 – Reliability
Our Original Insight

• Limitations of client-server model
 – On-demand caching attempts to address

• Simple caching depends on very high locality of reference
 – Web access does not have adequate locality of reference

• Hierarchical caching involves too many hops
 – Attempts to address this have not been effective

• Object routing
Internet Routing

• Telephone routing
 – Phone number specifies route
 – Statically configured route to each telephone

• Internet routing
 – IP address says nothing about location
 – On-going computation of route to each host
 – Have developed very efficient solutions
Object Routing

• View object (web page) as destination

• Compute route to each object on on-going basis
 – Closest instance of that object ("anycasting")

• Organize caches in overlay network
 – Can’t require object routing in all routers ("boil the ocean")

• Object router
 – Place next to each cache
 – Configured as parent of its cache
Object Routing

- In effect, a hierarchy…
 - With at most 2 hops
 - Where 2nd hop always “has content”…
 - …and incurs least possible latency in the 2nd hop
- I.e. hierarchy with bounded overhead(!)
- Request streams aggregated over all cache sites…
- …high “cache cloud” hit rate(!!).
- Effectiveness depends on performance differential…
Object Routing Protocol

• Very efficient
 – Unpopular objects, low update rates, wide distribution
 – Popular objects, high update rates, limited distribution
 – Supports request rate to pull all Internet content into caching system!

• Very robust
 – Benefits depend on local cache.

• Requires huge (billions) routing tables
 – Map object to destination
 – Developed proprietary solution
 – ~10-20bytes per entry
 – Constant access time (10’s of instructions)
Technology Summary

• Hugely scalable, weak coherency, on-demand caching

• Applications
 – Peer-to-peer
 – Web caching
 – Domain Name Service (DNS)

• Futures
 – Strong cache coherency (e.g. distributed filesystems)
What were the Risks?

• How will object routing perform?
 – Analysis
 – Simulation
 – Prototype

• How handle huge routing tables?
Cenus
Product Development
Cenus History

• Late 1999 - Developed object routing ideas

• 1/2000 - Cenus Technology calls
 – Existing company from Florida in on-line video distribution
 – Existing investors all private, “angel” investors
 – Looking for technology

• 2000 - Worked with Cenus to get further investment
 – No luck with VCs
 – Expanded group of angels
Cenus History (cont.)

- 2001 - Development in Utah
- 2002 - Development in Scotts Valley
- 2003 on
 - Basic technology developed
 - Attempt to find market
Cenus Product Development

• During .com boom needed very little… today need prototype

• Concept
 – “Mock-up”
 – Illustrate concept with scripted demo

• Prototype
 – Open source tools and FreeBSD
 – Ex-Novell engineers
 – Primitive build technology
 – Performance problems
Cenus Product Development

• Production
 – Ported to Solaris
 – Replaced Novell engineers with Silicon Valley engineers
 – Resolved performance problems

• Challenges
 – Routing algorithms are very subtle
 – Routing is tough to debug
 – Routing is not sexy to demo
 – Object routing table design is very abstract…
What were the Risks?

• 2000 was boom time in Silicon Valley
 – Engineers were expensive.
 – Space was expensive.
 – \textit{Located in Scotts Valley and used Novell engineers}

• Novell engineers were not Valley engineers
 – DOS/Windows perspective
 – Primitive software engineering technologies
 – Robust product development models
 – \textit{Didn’t know how to work on Valley time.}

• Marketing...
 – Spent our time looking for investors
 – No time identifying customers
Sources of Funding

- Venture Capitalists
- Angel Investors
- Grant funded research
Venture Capitalists

• Professional investors
• Invest other people’s money
• Provide
 – Connections (talent, partners, services)
 – Discipline
• Require
 – A (large) share of the company
 – Control of the company
How VCs Work

• They aren’t technical
• Herd mentality
• Funding process
 – Rounds
 – Lead and secondary investors
• They prefer large investments
• They don’t say “no”
• They don’t sign NDAs
• They will use what you teach them
What Gets VC Attention

• An unfair advantage
 – A good idea
 – A good team
 • Reputation
 • Skills

• “Buzz”
 – Something that gets investors attention
 – Well known team members
 – In a currently hot field
How to Work With VCs

• You need an introduction
• You need something they can’t buy elsewhere cheaper
 – Management team
 – Critical technical talent
• In the end you’ll be depending on their integrity!
 – Reputation
 – Gut sense of trust
• Remember - they’re accountable to their investors
Angel Funding

• Wealthy individuals
• Not professional investors
 – Less involvement in business
 – Less help with connections
 – Don’t do discipline
• Don’t require as large a share of company
• Don’t get as involved in company
• Can be impediment to VCs
Academic Research

• Grant funded research

• Technology ownership
 – Funding agency may claim some ownership
 – University claims ownership
 – Typically inventor is given share (UC > 30%)
 – In the end, not a big issue
 • First to market is the big issue

• Great for developing a prototype
What are the Risks?

• VCs
 – Will give too little…
 – …and take too much

• Angels
 – Will scare away VCs

• Academic research
 – Getting funding for the research you want…
Cenus
Lessons
Risk at Cenus

• What were the risks and how did we deal with them?
 – Technology… did a reasonably good job.
 – Marketing… barely thought about it.
 – Development costs… attempts to mitigate were not effective.
 – Environment… .com crash.
 – Funding… we depended on Angels (exacerbated last three risks)

• We gambled...

• *You don’t succeed in risky environments by gambling!*
Risk in General

• To succeed in a world of risk…
 …you don’t live with it,
 …you eliminate it.
Cisco Network Management and Operations Lab
Thank you!

brad@soe.ucsc.edu