Managing Risk in Technology Organizations

Brad Smith
Overview

• Why startups matter in UC.
• Cenus… a startup howto (or hownot:)
 – Technology
 – Product development
 – Funding
• Managing risk.
What is Purpose of UC?

• Research
• Teaching
• Public Service.

• Creation
• Dissemination
• Application…
• …of new knowledge.

• *Important goal of applying new knowledge is...*
• …*enhancing competitiveness of California economy.*
• *Technology transfer is important function of UC.*
• *Startups are an important vehicle for tech transfer.*
• *Opinion: students are the best agents of tech transfer!*
UC in World of Higher Ed

• Carnegie Foundation (www.carnegiefoundation.org) classifies degree-granting institutions in the U.S.
 – Tribal
 – Special Focus
 – Associate
 – Baccalaureate
 – Master’s
 – Doctorate
 • Doctoral/Research
 • Research University (high research activity)
 • Research University (very high research activity) - “R1”

• In general, UCs are “R1s”.
• Opinion: R1’s have primary responsibility for tech transfer.
Importance of UC as R1?

- There are 4,388 degree-granting colleges or universities in the U.S.
- How many are R1s?
 - 96 (2.2%) Research Universities (very high research activity).
 - 63 (1.4%) of these are public.
- UCSC’s role
 - 1 of < 2.2% dedicated to expanding human knowledge.
 - 1 of < 1.4% who serve this role solely for the public good.
 - 8 of which are UC’s that are near/at the top of this list.
- **Tech transfer is core to UC, and UC is one of few doing this**
- **Opinion: UC’s tech transfer role is incredibly important!**
Cenus
Summary

- Startup called Cenus Technologies
- Content routing
- Chief Architect from 2000-2002
- Based on research with Prof. JJ Garcia-Luna
- Have not been involved since ~2003
- Cenus is still in business…
Cenus
The Technology
The Internet

• What is a (the?) primary invariant of the Internet?
• It grows.
Client-Server

• Clients communicate directly with server
• All requests traverse the Internet
• Average latency is half the Internet’s diameter
• As the Internet grows this becomes painful
 – High latency → loose customers
 – High jitter → poor streaming performance
 – Single-point of overload and failure
Client Server in the Internet

• What’s the problem?
• Performance always gets worse.
Problem with Client-Server

- Clients communicate directly with server
- All requests traverse the Internet
- Average latency is half the Internet’s diameter
- As the Internet grows this becomes painful
 - High latency \rightarrow loose customers
 - High jitter \rightarrow poor streaming performance
 - Single-point of overload and failure
Solution - Caching

• Store copy of fetched data “locally”
• Satisfy future requests from cache
• Previous uses: memory, disk
• Effectiveness depends on
 – Locality of reference (requested object requested recently?)
 – Differential in access times (how far to the server?)
 – Request rate (how many clients does cache see requests for?)
 – …only control last one
Web Caching

- Clients talk to cache
- Cache fetches content for client
- Subsequent requests satisfied by cached content
- Weak cache coherency (TTL)
- Goals – improve performance, save external bandwidth
- **Effectiveness of cache measured by hit rate**
 - is a function of request rate…
 - … increase chance that content requested recently enough.
Standalone Caches not Effective

- Need very high request rate for effective caching
- Place caches high up network hierarchy
- Expensive
 - Big cache machine
 - High bandwidth cache connectivity
- Same problems - latency, jitter, reliability
- From many loaded web servers…
- …to one loaded cache server
Hierarchical Caching

• Attempts to resolve hit rate/performance trade-off
• Organize caches in hierarchy
• Only root cache fetches content from server
• In effect, aggregates request streams over set of caches
Results

• Performance is worse(!)
• Multiple caching hops exacerbates…
 – Latency
 – Jitter
 – Reliability
Our Original Insight

- Limitations of client-server model
 - On-demand caching attempts to address
- Simple caching depends on very high locality of reference
 - Web access does not have adequate locality of reference
- Hierarchical caching involves too many hops
 - Attempts to address this have not been effective

- Object routing
Internet Routing

• Telephone routing
 – Phone number specifies route
 – Statically configured route to each telephone

• Internet routing
 – IP address says nothing about location
 – On-going computation of route to each host
 – Have developed very efficient solutions
Object Routing

• View object (web page) as destination
• Compute route to each object on on-going basis
 – Closest instance of that object (“anycasting”)
• Organize caches in overlay network
 – Can’t require object routing in all routers (“boil the ocean”)
• Object router
 – Place next to each cache
 – Configured as parent of its cache
Object Routing

• In effect, a hierarchy…
 – With at most 2 hops
 – Where 2nd hop always “has content”

• I.e. hierarchy with bounded overhead(!)

• Request streams aggregated over all cache sites…

• …high “cache cloud” hit rate(!!).

• Effectiveness depends on performance differential…
Object Routing Protocol

• Very efficient
 – Unpopular objects, low update rates, wide distribution
 – Popular objects, high update rates, limited distribution
 – Supports request rate to pull all Internet content into caching system!

• Very robust
 – Benefits depend on local cache.

• Requires huge (billions) routing tables
 – Map object to destination
 – Developed proprietary solution
 – ~10-20bytes per entry
 – Constant access time (10’s of instructions)
Technology Summary

- Hugely scalable, weak coherency, on-demand caching

- Applications
 - Peer-to-peer
 - Web caching
 - Domain Name Service (DNS)

- Futures
 - Strong cache coherency (e.g. distributed filesystems)
What were the Risks?

- How will object routing perform?
 - Analysis
 - Simulation
 - Prototype
- How handle huge routing tables?
Cenus
Product Development
Cenus History

• Late 1999 - Developed object routing ideas
• 1/2000 - Cenus Technology calls
 – Existing company from Florida in on-line video distribution
 – Existing investors all private, “angel” investors
 – Looking for technology
• 2000 - Worked with Cenus to get further investment
 – No luck with VCs
 – Expanded group of angels
Census History (cont.)

• 2001 - Development in Utah
• 2002 - Development in Scotts Valley
• 2003 on
 – Basic technology developed
 – Attempt to find market
Cenus Product Development

- During .com boom needed very little… today need prototype
- Concept
 - “Mock-up”
 - Illustrate concept with scripted demo
- Prototype
 - Open source tools and FreeBSD
 - Ex-Novell engineers
 - Primitive build technology
 - Performance problems
Cenus Product Development

- **Production**
 - Ported to Solaris
 - Replaced Novell engineers with Silicon Valley engineers
 - Resolved performance problems

- **Challenges**
 - Routing algorithms are *very* subtle
 - Routing is tough to debug
 - Routing is not sexy to demo
 - Object routing table design is very abstract…
What were the Risks?

- 2000 was boom time in Silicon Valley
 - Engineers were expensive.
 - Space was expensive.
 - *Located in Scotts Valley and used Novell engineers*
- Novell engineers were not Valley engineers
 - DOS/Windows perspective
 - Primitive software engineering technologies
 - Robust product development models
 - *Didn’t know how to work on Valley time.*
- Marketing...
 - Spent our time looking for investors
 - No time identifying customers
Census Funding
Sources of Funding

• Venture Capitalists
• Angel Investors
• Grant funded research
Venture Capitalists

• Professional investors
• Invest other people’s money
• Provide
 – Connections (talent, partners, services)
 – Discipline
• Require
 – A (large) share of the company
 – Control of the company
How VCs Work

• They aren’t technical
• Herd mentality
• Funding process
 – Rounds
 – Lead and secondary investors
• They prefer large investments
• They don’t say “no”
• They don’t sign NDAs
• They will use what you teach them
What Gets VC Attention

• An unfair advantage
 – A good idea
 – A good team
 • Reputation
 • Skills

• “Buzz”
 – Something that gets investors attention
 – Well known team members
 – In a currently hot field
How to Work With VCs

• You need an introduction
• You need something they can’t buy elsewhere cheaper
 – Management team
 – Critical technical talent
• In the end you’ll be depending on their integrity!
 – Reputation
 – Gut sense of trust
• Remember - they’re accountable to their investors
Angel Funding

- Wealthy individuals
- Not professional investors
 - Less involvement in business
 - Less help with connections
 - Don’t do discipline
- Don’t require as large a share of company
- Don’t get as involved in company
- Can be impediment to VCs
Academic Research

• Grant funded research

• Technology ownership
 – Funding agency may claim some ownership
 – University claims ownership
 – Typically inventor is given share (UC > 30%)
 – In the end, not a big issue
 • First to market is the big issue

• Great for developing a prototype
What are the Risks?

• VCs
 – Will give to little…
 – …and take too much

• Angels
 – Will scare away VCs

• Academic research
 – Getting funding for the research you want…
Cenus
Lessons
Risk at Cenus

- What were the risks and how did we deal with them?
 - Technology… did a reasonably good job.
 - Marketing… barely thought about it.
 - Development costs… attempts to mitigate were not effective.
 - Environment… .com crash.
 - Funding… we depended on Angels (exacerbated last three risks)

- We gambled...

- *You don’t succeed in risky environments by gambling!*
Risk in General

• To succeed in a world of risk…
 —…you don’t live with it,
 —…you eliminate it.
Cisco Network Management and Operations Lab
Thank you!

brad@soe.ucsc.edu