Open vs. Proprietary Standards

- Open standard – a standard that is well documented, unencumbered by intellectual property rights and restrictions, and available to any vendor.

- What are the advantages?

- What are the disadvantages?

Network Architecture

- Network architectures are layered
- Each layer
 - uses the services of the layers below
 - To offer more advanced services to layer above
- Allows layers to be designed independently
- We will talk about 3 layers next...

Network
Link
Physical
Network Layer

- A wants to send some data to C
 - Suppose A knows C’s address
 - A sends a packet towards C
 - A marks his packet with C’s Address (an IP Address)

Post Office Analogy

- Bob in New York
 - Alice Smith
 - 1156 High St
 - Santa Cruz 95064
 - Plane to London
 - Plane to SFO
 - Truck to Santa Cruz
 - Truck to Santa Rosa

Routing in the Internet

- Many feasible paths from source to destination.

Routing

- Updating the routing table
- Objective: each packet gets closer to destination

Packet forwarding

- Transmitting each packet on the appropriate output link
- Based on routing table
Routing Algorithms

Routers talk to each other to build their routing tables.

Routing Table has Wild Cards

Internet Routing is Hierarchical

Routing Concerns

- Long routes
- Circular routes
- Hijacking routes
- Route flapping

IP Addresses vs Mac Addresses

- Hierarchical
 - The beginning bits tell you which network the host is on
 - Ex: UCSC addresses start with 128.114.X.X
 - The last bits tell you which host of the network
 - Not Changeable
 - Changes with location of Host
 - 4 bytes
 - Only 4.2 billion

- Not Hierarchical
 - Beginning bits tell nothing useful

- Not Changeable
 - 6 bytes
 - 281 Trillion

Link and Network Layer Interaction
Transport Protocols

- The Internet is unreliable
 - It will make a "best effort" to get your packet to its destination
- Packets can be lost because of
 - Congestion
 - Link errors
 - Routing problems

<table>
<thead>
<tr>
<th>Application</th>
<th>Presentation</th>
<th>Session</th>
<th>Transport</th>
<th>Network</th>
<th>Link</th>
<th>Physical</th>
</tr>
</thead>
</table>

Transmission Control Protocol (TCP)

- Retransmit mechanism for reliability
 - Receiver sends acknowledgements to sender
 - If a packet is lost, source fails to get ACK, and then retransmits.
- Congestion control
 - If congestion perceived (by lost packets)
 - Source reduces its send rate
 - When loss, sender reduces send rate by half
 - Otherwise slowly increases

TCP cont’d

- TCP port numbers
 - TCP Header has a "port" number field
 - Helps host sort out how to route packets to applications

<table>
<thead>
<tr>
<th>IP Header</th>
<th>TCP Header</th>
<th>Payload</th>
</tr>
</thead>
</table>

UDP

- For some applications packet retransmissions are not worthwhile
 - Why?
- For those applications, we use UDP
- UDP is a transport protocol that
 - Does not do retransmissions
 - Does not do congestion control

Congestion Control

- When networks are congested, certain sessions (Source-destination pairs) should reduce offered rates.
 - Today all TCP sessions slow down when they detect packet losses.
 - UDP sessions do not slow down.
- What are some alternative strategies?
 - Have those whose applications aren’t as sensitive slow down more?
 - How would we know which are less sensitive

Pricing within the Internet

- Flat Rate or simple usage based
- Customer pays an ISP
 - Often Flat Rate per month
 - ISP pays a backbone AS
 - Often just flat rate, dependent on access link speed.
 - Sometimes based on total usage
 - Backbone NSPs peer with each other
 - Often for free if they exchange comparable amounts of traffic.
- Overall
 - Internet billing today is much more course grained than telephone billing
Domain Names

IP addresses are inconvenient for people
- 32 bits hard to remember
- 128 bits very hard to remember

Domain names
- e.g. argus.eecs.berkeley.edu
- Easier to remember than IP addresses
- However, we need some way of mapping domain names to IP addresses.

Hierarchy in Addresses vs. Names

Addresses hierarchical in topology
- Maximize "wild cards" and distribute address administration

Names hierarchical in administration
- Single administered organizations often distributed topologically (e.g. ibm.com)

Transport Protocols

- The Internet is unreliable
 - It will make a "best effort" to get your packet to its destination
- Packets can be lost because of
 - Congestion
 - Link errors
 - Routing problems

OSI Layers

Application
Presentation
Transport
Network
Link
Physical

Internet Protocol (IP), ...
TCP, UDP
Ethernet, Wi-Fi, SONNET, ...
Modulation Schemes: QAM, OFDM, etc...

Some Typical Topologies

Home Network
- Ethernet Switch
- DSL Modem
- Telephone Line (to local Office)

Domain Name System (DNS)

Root Name Server
Berkeley Name Server
EECS Name Server
SoE Name Server
UCSC Name Server

Hierarchy in Addresses vs. Names

Addresses hierarchical in topology
- Maximize "wild cards" and distribute address administration

Names hierarchical in administration
- Single administered organizations often distributed topologically (e.g. ibm.com)
Small/Medium Business

- Ethernet Switch
- T1 Modem
- T1 Line
- Router with Firewall
- Web Site Server

ISP Topology

- Telephone Company
 - Local Office
 - Local Loop
 - Telephone Switch
- ISP Point of Presence
 - DSL Modem
 - Leased Line to NAP
 - To Telephone Network

Network Service Provider

Large E-Business

- Presentation Logic (Assembling Web page)
- Logic Flow of Interaction
- Interconnected with Gigabit Ethernet or other technology
- Web Servers
- Application Servers
- Databases
- Web Caching

- Speed up web page loading by storing previously seen components locally
- http://www.ucsc.edu

Web Caching

- Web Caching

- Cache on Hard Drive

Akamai Case

- Akamai Case
- Web server

- UNIVERSITY OF CALIFORNIA
Internet Bottlenecks

- **First Mile** (Server Capacity) - 70% of website performance problems according to one study
- **Backbone** - Plentiful, but some shortage within metropolitan areas
- **Peering** - Exchange of traffic between NSPs
- **Last Mile** to home
 - 56 K modems are slow
 - Shared LAN limitations

Solutions

- **Expand Bandwidth**
 - Being done
- **Mirroring web sites**
 - Put exact copy of same web page to multiple servers
 - Tricky to duplicate content
- **Caching**
 - Problem: Stale Content
 - Problem: Hard to count "click throughs"
- **Content Distribution Networks**

Freeflow

- **Deployed in 1999**
- **Akamai Infrastructure**
 - 13000 servers in 954 networks by 2001
- **Customers**
 - Large Commercial Websites
- **Revenue model - $2000 per mbps served**
 - (For comparison, normal Internet access cost 500 mbps at time)

2000 Financials

- $196 Million Loss (before special charges)
- $90 million revenue
- 520 gross margin, after deducting
 - server depreciation
 - payments to network partners
 - Data center space
 - But, most expenses of shouldn't grow at same rate as number of customers, so margin should improve
- $201.5 million SG&A
 - (selling general and administrative)
 - (largely sales force cost)
 - Again, this might not grow at same rate as the number of customers.
- $40 million R&D

Competition

- **Hosting firms (substitute)**
 - Exodus
- **Other CDNs**
 - Sandpiper, Adero, Mirror Image
- **Content Alliances**
 - Akamai’s competitors banded together to share networks
2001 Market Changes

Bad
- Dot-coms bust
- Customers leave
 - "churn rate goes to 22% per quarter"

Good
- Hosting firms go bust (exodus)
- Some CDN competitors go bust.
- Competing CDN alliances mired in problems

EdgeSuite

- Assemble dynamic pages at edges rather than just serve heavy objects
- Value proposition
 - Performance improvement
 - Cost and complexity reduction
 - Scalability
 - Security
- Pricing - higher than old service
- Soon edge suite dominated revenue

Technology

Dynamic CDN technology: ESI (edge sides includes)

Develop as open standard why?
Akamai not big and credible enough to force a de-facto standard on market

Marketing

- Difference in selling old vs new products:
 - Old product
 - Geared toward speeding up websites
 - Revenues of their clients depended on speed
 - Easier to get sale
 - New Product
 - Simplify company IT function
 - Cost vs. revenue center
 - Harder sell. More data driven...
 - Consequently new product needs more professional sales force
- Channels?
 - Distribution Partners (IBM) credibility
 - Direct Sales Force too

Recent Performance