Class announcements

- Thursday:
 - Assignment 4 due
 - Messerschmitt Ch 18 (493-512)

- 3rd database tutorial:
 - Friday, May 21st, from 11am-12:30pm
Student Presentations
Standardization
Purpose of a standard?

- Allow products or services from different suppliers or providers to be interoperable
Scope of a standard

Included:

- interfaces (physical, electrical, information)
- architecture (reference model)
- formats and protocols (FAP)
- compliance tests (or process)

Excluded:

- implementation
- (possibly) extensions
Some issues

Once a standard is set

- becomes possible source of industry lock-in; overcoming that standard requires a major (~10x?) advance
- may lock out some innovation

In recognition, some standards evolve

- IETF, CCITT (modems), MPEG
- backward compatibility
Types of standards

de jure
- Sanctioned and actively promoted by some organization with jurisdiction, or by government

de facto
- Dominant solution arising out of the market
- Voluntary industry standards body

Industry consortium

Common or best practice

Examples?
Examples

de jure
- GSM, ISDN Telephone interface

de facto
- Microsoft Windows API (Application Programming Interface)
- Intel Pentium instruction set

Voluntary industry standards body
- IEEE (Institute of Electrical and Electronic Engineers)
- IETF (Internet Engineering Task Force)

Industry consortium
- W3C (World Wide Web Consortium)
- SET (Secure Electronic Transactions)

Best practice
- Windowed GUI
The changing process

- As technology and industry move more quickly, the global consensus standards activity has proven too unwieldy
 - e.g. ISO
- "New age" standards activities are more informal, less consensus driven, a little less political, more strategic, smaller groups
 - e.g. OMG, IETF, ATM Forum, WAP
- Programmable/extensible approaches for flexibility
 - e.g. XML, Java
Reasons for change

- From government sanction/ownership to market forces
 - Increasing fragmentation
 - Importance of time to market

Greater complexity

- Less physical/performance constraint for either hardware or software
Lock-in

(Particularly open) standards reduce consumer lock-in

- Consumers can mix and match complementary products

Increase supplier lock-in

- Innovation limited by backward compatibility
- e.g. IP/TCP, x86, Hayes command set
Aside: Network Effects

- The value of owning some products goes up if lots of other people have it too.
 - Examples?

- This phenomenon is called “network effects”

- How do standards influence network effects?
Network effects

Standards can harness network effects to the industry advantage
- Revenue = (market size) x (market share)

Increases value to customer
Increases competition
- Only within confines of the standard
- But forces customer integration or services of a system integrator

Slide adapted from slides for Understanding Networked Applications by David G Messerschmitt. Copyright 2000. See copyright notice.
Why standards?

de jure are customer driven to reduce confusion and cost

de facto standards are sometimes the result of positive feedback in network effects

Customers and suppliers like them because they
- increase value
- reduce lockin

Governments like them because they
- promote competition in some circumstances
- May believe they can be used to national advantage
Approaches

Consensus
- ISO

Collaborative design
- MPEG

Competitive “bake off”
- IETF

Coordination of vendors
- OMG
Open vs. Proprietary Standards

- Open standard - a standard that is well documented, unencumbered by intellectual property rights and restrictions, and available to any vendor.

- What are the advantages?

- What are the disadvantages?
Why companies participate

Pool expertise in collaborative design
 - e.g. MPEG

Have influence on the standard

Get technology into the standard
 - Proprietary, with expectation of royalties
 - Non-proprietary

Reduced time to market
Standards applied to Business Processes?

- Can you standardize business processes?

- Yes!
 - ISO 9000
 - A set of standardized business processes for Quality Management.
 - Supports TQM (Total Quality Management)
 - RosettaNet
 - A set of standardized business processes, and accompanying standardized data interfaces/formats for conducting e-business.
Databases

by

David G. Messerschmitt
Databases

Treat data as a separate asset

- May be shared by multiple applications

Provide protection and integrity features appropriate to mission-critical data

- Access control
- Integrity constraints
- Persistence
- etc.
Two capabilities

Aggregation: accessing multiple databases

Sharing: two or more applications accessing the same databases
Relational table

<table>
<thead>
<tr>
<th>Table</th>
<th>Employee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Address</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Record</th>
<th>Field</th>
</tr>
</thead>
</table>
SQL interface

- SQL (Structured Query Language)
- Presents single abstract interface to the application logic
 - For manipulating, and extracting data from database
- Standardized, not vendor specific

- Encapsulates various internal details
 - Data partitioning and replication
 - Host mapping
 - File representation
 - etc.
Database operations

<table>
<thead>
<tr>
<th>Departments</th>
<th>Employees</th>
</tr>
</thead>
</table>

Each operation results in a new table

“PROJECT”

“SELECT”
Database Operations

Passengers

<table>
<thead>
<tr>
<th>Name</th>
<th>Dept ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>1</td>
</tr>
<tr>
<td>Bob</td>
<td>1</td>
</tr>
<tr>
<td>Chris</td>
<td>2</td>
</tr>
</tbody>
</table>

Departments

<table>
<thead>
<tr>
<th>Dept Name</th>
<th>Dept ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering</td>
<td>1</td>
</tr>
<tr>
<td>Sales</td>
<td>2</td>
</tr>
</tbody>
</table>

JOIN

<table>
<thead>
<tr>
<th>Name</th>
<th>Dept ID</th>
<th>Dept Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>1</td>
<td>Engineering</td>
</tr>
<tr>
<td>Bob</td>
<td>1</td>
<td>Engineering</td>
</tr>
<tr>
<td>Chris</td>
<td>2</td>
<td>Sales</td>
</tr>
</tbody>
</table>
Entries are simple data types or compositions of those types
- Integer, string, etc.
Markup languages
Definition

A *markup language* describes the structure of a document

- Based on tags
- Tags denote structural elements like sections, subsections, figures, etc

Internationally standardized, so application independent
Example: HTML

```html
<html>
<h1> Super Widget </h1>
<h2> Widgets Incorporated </h2>
<em> 123456789 </em>
<br>
<p> $300 </p>
</html>
```

Super Widget

Widgets Incorporated

123456789

$300
Example: XML

Tags Emphasize what the things *mean* rather than how to *format* their Presentation.

```xml
<xml>
  <product>
    <model> Super Widget </model>
    <make> Widgets Incorporated </make>
    <sku> 123456789 </sku>
    <price> $300 </price>
  </product>
</xml>
```
XML in Ecommerce example

<xml>
 <product>
 <model>Super Widget</model>
 <make>Widgets Incorporated</make>
 <sku>123456789</sku>
 <price>$300</price>
 </product>
</xml>

Stuff4U

Super Widget
$300

Amazing Gadget
$500

Supplier

Product info
From each Supplier sent in XML

Retailer

Consumer
XML in ecommerce example 2

Supplier

Product info
From each Supplier sent in XML

<xml>
 <product>
 <model>Super Widget</model>
 <make>Widgets Incorporated</make>
 <sku>123456789</sku>
 <price>$300</price>
 </product>
</xml>

Super widget recognized and managed by SCM software.

XYZ Manufacturing
Family lineage

- **SGML**: Standardized in mid 80s by ISO
- **HTML**: Introduced in Early 90s
 - Emphasizes formatting and presentation of documents
- **XML**: Proposed in mid 90s
 - Emphasizes structure of documents
 - Purpose- and industry-specific extensions
Break!
mySQL Case
mySQL student talk
mySQL

What does mySQL make?

How Successful is mySQL?

- Visibility: Fortune magazine, more mentions on www
- Reaction from giants
- Revenue growth 2001 700k, 2002 6.2m, 2003 10m
- Good performance reviews
- Recent SAP alliance
- But Market share tiny:
 - $10 million out of $10 billion market!

Why Success?

- Good Technology
- Large DBMS bloated with features most don’t need
- Innovative OSS model
MySQL

How does OSS work?

Two Types of License:

- **GPL**
 - Free
 - No Support
 - *Any software that uses MySQL as a module must itself be made GPL*

- **Commercial License**
 - Support
 - *Could be distributed with non-open source software*
 - Not Free:
 - MySQL: Classic $250, Pro $495 (for ~ 50 users)
 - Compare to:
 - MSFT $3150 single proc for 50 users
 - IBM $33000 single proc for 50 users
 - Oracle $40000 single proc for 50 users
Aside: DB’s in different software stacks

<table>
<thead>
<tr>
<th>General Software Stack</th>
<th>ERP Software Stack</th>
<th>Web Application Software Stack</th>
<th>Banking Software Stack</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Or Oracle, Axtapa, etc.</td>
<td>Apache Web Server</td>
<td></td>
</tr>
<tr>
<td>Middleware</td>
<td>Oracle</td>
<td>MySQL</td>
<td>Oracle</td>
</tr>
<tr>
<td></td>
<td>Or MySQL, IBM, etc</td>
<td>or other DB</td>
<td>or other DB</td>
</tr>
<tr>
<td>Operating System</td>
<td>MS Windows</td>
<td>Linux</td>
<td>IBM z/OS</td>
</tr>
<tr>
<td></td>
<td>or other OS</td>
<td>or other OS</td>
<td>or other OS</td>
</tr>
</tbody>
</table>

- Which companies are competitors?
- Which are complimenters?
- Which are both!?
Which segments of market is mySQL strong in?
- Large Companies or Small Companies?
- Web applications or Critical Enterprise data?

Why would a major enterprise want to pay so much more for an Oracle or IBM DB?
My SQL: market

<table>
<thead>
<tr>
<th>Enterprise wide data 90%</th>
<th>Small 20%</th>
<th>Medium 30%</th>
<th>Large 50%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Microsoft</td>
<td></td>
<td>Oracle</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IBM</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Reliability</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Scalability</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Support</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Longevity</td>
</tr>
<tr>
<td>Web Sites 10%</td>
<td>My SQL Cost</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

How should mySQL grow in order to meet its stated goal of getting to $100 million in revenue?

Figure Adapted from “Teaching Note for MySQL Open Source Database,” 6/1/04, Stanford GSB.
My SQL: Growth Strategy

- Lack of Brand identity in this segment
- MySQL lacks the organization to offer support
- Large enterprises have high switching costs

Figure Adapted from “Teaching Note for MySQL Open Source Database,” 6/1/04, Stanford GSB.
My SQL: Growth Strategy

<table>
<thead>
<tr>
<th>Enterprise data (90%)</th>
<th>Small (20%)</th>
<th>Medium (30%)</th>
<th>Large (50%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microsoft</td>
<td></td>
<td></td>
<td>Oracle</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IBM</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Reliability</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Scalability</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Support</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Longevity</td>
</tr>
</tbody>
</table>

| Web Sites (10%) | My SQL Cost | | |
| | | Stay Put? | |

- Not a big enough market to reach stated $100 million goal.

Figure Adapted from “Teaching Note for MySQL Open Source Database,” 6/1/04, Stanford GSB.
My SQL: Growth Strategy

<table>
<thead>
<tr>
<th>Enterprise wide data</th>
<th>Small 20%</th>
<th>Medium 30%</th>
<th>Large 50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Web Sites</td>
<td>Microsoft</td>
<td></td>
<td>Oracle</td>
</tr>
<tr>
<td></td>
<td>Large</td>
<td>IBM</td>
<td>Reliability</td>
</tr>
<tr>
<td></td>
<td>Cost</td>
<td></td>
<td>Scalability</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Support</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Longevity</td>
</tr>
</tbody>
</table>

- Many of these customers already using MySQL with websites
- Less emphasis on global organization
- Leverage SAP alliance
- Up against Microsoft.

Figure Adapted from “Teaching Note for MySQL Open Source Database,” 6/1/04, Stanford GSB.
My SQL: Growth Strategy

Key Points:

- **+ builds on existing brand and strengths**
- **- Market not so big**

Market Segmentation:

<table>
<thead>
<tr>
<th>Segment</th>
<th>Small 20%</th>
<th>Medium 30%</th>
<th>Large 50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enterprise wide data 90%</td>
<td>Microsoft</td>
<td>Oracle IBM</td>
<td>Reliability Scalability Support Longevity</td>
</tr>
<tr>
<td>Web Sites 10%</td>
<td>My SQL Cost</td>
<td>Maybe?</td>
<td></td>
</tr>
</tbody>
</table>

Figure Adapted from “Teaching Note for MySQL Open Source Database,” 6/1/04, Stanford GSB.