Class announcements

- For Next Class
 - Read: MySQL Database Case

- Database tutorials
Four possibilities

<table>
<thead>
<tr>
<th>Product</th>
<th>Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microsoft Office</td>
<td>Hotmail</td>
</tr>
<tr>
<td>Application</td>
<td></td>
</tr>
<tr>
<td>Infrastructure</td>
<td>Internet DNS</td>
</tr>
<tr>
<td>Personal computer</td>
<td></td>
</tr>
</tbody>
</table>

Slide adapted from slides for Understanding Networked Applications
By David G Messerschmitt. Copyright 2000. See copyright notice
Application Service Provider

- **Two types**
 - **Bundled**
 - An infrastructure provider bundles applications with their infrastructure
 - Example: AOL, telephony service providers
 - **Unbundled**
 - A provider of an application service without providing an infrastructure service
 - Examples?
Examples of unbundled ASP model

- Yahoo: Web-based calendar
- Hotmail: Web-based email
- Schwab: Web-based stock trading
Unbundled ASP model

Advantageous to user

- Proven way to reduce installation, integration, and maintenance costs
- Contractual obligation for availability and quality
- Location independence
Advantages to supplier

- Ongoing revenue stream supporting upgrade and maintenance
- Usage-based revenue better aligned with user’s value proposition
- Opportunity for price discrimination, advertising revenue, etc.
Some pricing alternatives

Price discrimination?

Usage dependent?

Terms and conditions
- fixed, leasing, per-use, subscription
- warrantee, service level agreements

Bundles
- maintenance, support, releases, provisioning and operations

Who pays?
- sometimes not the end user
Application acquisition

Application

\{ Develop internally \quad \text{Buy as product} \quad \text{Contract development} \quad \text{Product w/ customization} \}

Trend

Software supplier

Outsource developer

Supplier, consultants
Stovepipe vs. Integrated Infrastructure

Stovepipe Architecture
---or---
Turnkey Solution

- Single supplier provides all encompassing solution
- (complete with infrastructure)

Integrated Infrastructure

- Separate infrastructure that can support many applications

Slide adapted from slides for *Understanding Networked Applications* by David G Messerschmitt. Copyright 2000. See copyright notice.
From stovepipe to layering

Data
Voice
Video

Application-dependent infrastructure

Many applications

Integrated Infrastructure (Maybe broken into Additional layers.)

Application-independent
Stovepipe vs. Integrated Infrastructure

- What are some examples of each?

- What are the advantages of each approach?
Vertical Integration vs. Diversification

- A company is **vertically integrated** when it makes rather than buys the subsystems in its products.

- A **diversified** company produces products across different industry segments.
Vertical Integration vs. Diversification

- Why do customers favor less vertical integration?
 - Prefer competition amongst component suppliers
 - Mix and match components
 - Reduced lock in

- Disadvantages??
 - Customer needs to integrate components from different suppliers.

Slide adapted from slides for *Understanding Networked Applications* by David G Messerschmitt. Copyright 2000. See copyright notice.
Vertical Integration vs. Diversification

- Why do customers favor diversification?
 - Reduce coordination costs by having to deal with fewer suppliers.
General Trend

- Less Vertical Integration

- More Diversification

- Of course there are exceptions...
Today’s supplier structure

- Applications
- Frameworks and components
- Middleware
- Infrastructure (network, OS) software
- Equipment (network, computers)
- Semiconductors, components

Slide adapted from slides for *Understanding Networked Applications* by David G Messerschmitt. Copyright 2000. See copyright notice.
Standardization
Purpose of a standard?

- Allow products or services from different suppliers or providers to be interoperable
Scope of a standard

Included:

- interfaces (physical, electrical, information)
- architecture (reference model)
- formats and protocols (FAP)
- compliance tests (or process)

Excluded:

- implementation
- (possibly) extensions
Reference model

Decide decomposition of system
- where interfaces fall

Defines the boundaries of competition and ultimately industrial organization
- competition on the same side of an interface
- complementary suppliers on different sides
- hierarchical decomposition at the option of suppliers
- (possibly) optional extensions at option of suppliers
Some issues

Once a standard is set

- becomes possible source of industry lock-in; overcoming that standard requires a major (~10x?) advance
- may lock out some innovation

In recognition, some standards evolve

- IETF, CCITT (modems), MPEG
- backward compatibility
Types of standards

de jure
- Sanctioned and actively promoted by some organization with jurisdiction, or by government

de facto
- Dominant solution arising out of the market
- Voluntary industry standards body

Industry consortium
Common or best practice

Examples?
Examples

de jure
- GSM, ISDN Telephone interface

de facto
- Microsoft Windows API (Application Programming Interface)
- Intel Pentium instruction set,

Voluntary industry standards body
- IEEE (Institute of Electrical and Electronic Engineers)
- IETF (Internet Engineering Task Force)

Industry consortium
- W3C (World Wide Web Consortium)
- SET (Secure Electronic Transactions)

Best practice
- Windowed GUI
The changing process

- As technology and industry move more quickly, the global consensus standards activity has proven too unwieldy
 - e.g. ISO
- “New age” standards activities are more informal, less consensus driven, a little less political, more strategic, smaller groups
 - e.g. OMG, IETF, ATM Forum, WAP
- Programmable/extensible approaches for flexibility
 - e.g. XML, Java
Reasons for change

- From government sanction/ownership to market forces
 - Increasing fragmentation
 - Importance of time to market

Greater complexity

- Less physical/performance constraint for either hardware or software

Slide adapted from slides for Understanding Networked Applications
By David G Messerschmitt. Copyright 2000. See copyright notice
Lock-in

(Particularly open) standards reduce consumer lock-in

- Consumers can mix and match complementary products

Increase supplier lock-in

- Innovation limited by backward compatibility
- e.g. IP/TCP, x86, Hayes command set
Aside: Network Effects

- The value of owning some products goes up if lots of other people have it too.
 - Examples?

- This phenomenon is called “network effects”

- How do standards influence network effects?
Network effects

Standards can harness network effects to the industry advantage

- Revenue = (market size) x (market share)

Increases value to customer

Increases competition

- Only within confines of the standard
- But forces customer integration or services of a system integrator

Slide adapted from slides for *Understanding Networked Applications* by David G Messerschmitt. Copyright 2000. See copyright notice.
Why standards?

de jure are customer driven to reduce confusion and cost

de facto standards are sometimes the result of positive feedback in network effects

Customers and suppliers like them because they
- increase value
- reduce lockin

Governments like them because they
- promote competition in some circumstances
- *May believe* they can be used to national advantage

Slide adapted from slides for *Understanding Networked Applications*
By David G Messerschmitt. Copyright 2000. See copyright notice
Approaches

Consensus
- ISO

Collaborative design
- MPEG

Competitive “bake off”
- IETF

Coordination of vendors
- OMG
Open vs. Proprietary Standards

- Open standard - a standard that is well documented, unencumbered by intellectual property rights and restrictions, and available to any vendor.

- What are the advantages?

- What are the disadvantages?
Why companies participate

Pool expertise in collaborative design
- e.g. MPEG

Have influence on the standard

Get technology into the standard
- Proprietary, with expectation of royalties
- Non-proprietary

Reduced time to market
Standards applied to Business Processes?

- Can you standardize business processes?

- Yes!
 - ISO 9000
 - A set of standardized business processes for Quality Management.
 - Supports TQM (Total Quality Management)
 - RosettaNet
 - A set of standardized business processes, and accompanying standardized data interfaces/formats for conducting e-business.
Databases

by

David G. Messerschmitt
Databases

Treat data as a separate asset

- May be shared by multiple applications

Provide protection and integrity features appropriate to mission-critical data

- Access control
- Integrity constraints
- Persistence
- etc.
Two capabilities

Aggregation: accessing multiple databases

Sharing: two or more applications accessing the same databases
Relational table

<table>
<thead>
<tr>
<th>Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>Employee</td>
</tr>
<tr>
<td>Name</td>
</tr>
<tr>
<td>Address</td>
</tr>
<tr>
<td>Dept</td>
</tr>
</tbody>
</table>

Record

Field
SQL interface

- SQL (Structured Query Language)
- Presents single abstract interface to the application logic
 - For manipulating, and extracting data from database
- Standardized, not vendor specific

- Encapsulates various internal details
 - Data partitioning and replication
 - Host mapping
 - File representation
 - etc.
Database operations

Each operation results in a new table

“PROJECT”

“SELECT”
Database Operations

Passengers

<table>
<thead>
<tr>
<th>Name</th>
<th>Dept ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>1</td>
</tr>
<tr>
<td>Bob</td>
<td>1</td>
</tr>
<tr>
<td>Chris</td>
<td>2</td>
</tr>
</tbody>
</table>

Departments

<table>
<thead>
<tr>
<th>Dept Name</th>
<th>Dept ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering</td>
<td>1</td>
</tr>
<tr>
<td>Sales</td>
<td>2</td>
</tr>
</tbody>
</table>

JOIN

<table>
<thead>
<tr>
<th>Name</th>
<th>Dept ID</th>
<th>Dept Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>1</td>
<td>Engineering</td>
</tr>
<tr>
<td>Bob</td>
<td>1</td>
<td>Engineering</td>
</tr>
<tr>
<td>Chris</td>
<td>2</td>
<td>Sales</td>
</tr>
</tbody>
</table>
- Entries are simple data types or compositions of those types
 - Integer, string, etc.

<table>
<thead>
<tr>
<th>Year</th>
<th>City</th>
<th>Accommodation</th>
<th>Tourists</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002</td>
<td>Oakley</td>
<td>Bed&Breakfast</td>
<td>14</td>
</tr>
<tr>
<td>2002</td>
<td>Oakley</td>
<td>Resort</td>
<td>190</td>
</tr>
<tr>
<td>2002</td>
<td>Oakland</td>
<td>Bed&Breakfast</td>
<td>340</td>
</tr>
<tr>
<td>2002</td>
<td>Oakland</td>
<td>Resort</td>
<td>230</td>
</tr>
<tr>
<td>2002</td>
<td>Berkeley</td>
<td>Camping</td>
<td>120000</td>
</tr>
<tr>
<td>2002</td>
<td>Berkeley</td>
<td>Bed&Breakfast</td>
<td>3450</td>
</tr>
<tr>
<td>2002</td>
<td>Berkeley</td>
<td>Resort</td>
<td>390800</td>
</tr>
<tr>
<td>2002</td>
<td>Albany</td>
<td>Camping</td>
<td>8790</td>
</tr>
<tr>
<td>2002</td>
<td>Albany</td>
<td>Bed&Breakfast</td>
<td>3240</td>
</tr>
<tr>
<td>2003</td>
<td>Oakley</td>
<td>Bed&Breakfast</td>
<td>55</td>
</tr>
<tr>
<td>2003</td>
<td>Oakley</td>
<td>Resort</td>
<td>320</td>
</tr>
<tr>
<td>2003</td>
<td>Oakland</td>
<td>Bed&Breakfast</td>
<td>280</td>
</tr>
<tr>
<td>2003</td>
<td>Oakland</td>
<td>Resort</td>
<td>210</td>
</tr>
<tr>
<td>2003</td>
<td>Berkeley</td>
<td>Camping</td>
<td>115800</td>
</tr>
<tr>
<td>2003</td>
<td>Berkeley</td>
<td>Bed&Breakfast</td>
<td>4560</td>
</tr>
<tr>
<td>2003</td>
<td>Berkeley</td>
<td>Resort</td>
<td>419000</td>
</tr>
<tr>
<td>2003</td>
<td>Albany</td>
<td>Camping</td>
<td>7650</td>
</tr>
<tr>
<td>2003</td>
<td>Albany</td>
<td>Bed&Breakfast</td>
<td>6750</td>
</tr>
</tbody>
</table>
Algorithms and protocols

Adapted from
David G. Messerschmitt
Algorithm

Specified sequence of steps that
- accomplish a designated task
- in a finite number of steps

Representation:
- simple algorithm: flowchart
- complicated algorithm: program
Example: one turn at monopoly

Start turn → Throw dice → Move token number of squares indicated on dice

Move to “jail” square → Yes

Land on “go to jail”? → Yes

No → Do not move; follow policies for square (like “pay rent”)

Finish turn
Algorithm building blocks

Sequence

Action

Action

Action

Finish

Selection

Start

Decision

Action

Action

Finish

Loop

Start

Test

Start

Action

Programming languages support these three building blocks
Protocol

- Distributed algorithm ...
- Realized by two or more modules to coordinate their actions or accomplish some shared task
- **Module interoperability requires a protocol**
 - Prescribed order of method invocations
 - Part of interface documentation
Monopoly players protocol

This is a protocol interaction diagram
Example:

HEADQUARTERS

Airline Dataserver

Airline Intranet

HHC Server

Wireless Link

HHC

Airline Dataserver

Airline Intranet
Layered Protocols Example

HHC Server

HHC Server Application

Windows OS
Break Messages into Packets
Networking Infrastructure

Request Pass. Data

Send Pass. Data As Message

Send Packet

Acknowledge Packet
Link Level Protocol

Palm OS

Networking Infrastructure

HHC

HHC Application

Networking Infrastructure
Three simple protocols

One-way message: send-receive
Two-way interaction: request-response
Push: publish-subscribe
Send - Receive
Request - Response
Send - Acknowledge
Example: HTTP (Hyper Text Transfer Protocol)

1. User activates URL
2. HTTP request
3. HTTP response (embedded document)
4. Browser displays document (if HTML) or invokes “helper application”
Locating things

by

David G. Messerschmitt
Three ways of locating things

Name
- “Joe Bloe”

Address
- “1299 Hearst St, Berkeley, CA”

Reference
- “Postmaster of Berkeley CA”
Name

- Symbolic (character string) representation
- Easy for people to remember or guess
- Identifies, but
 - Does not locate directly
 - Distinction important for mobile entities
- Not unique: entities can have more than one name (called aliases)
Hierarchical names

Hierarchy makes names easier to remember or guess

Host domain names:

- “info.sims.berkeley.edu”
- designates administrative hierarchy

File names:

- “c:\My Documents\Docs\Resume.doc”
- designates folder hierarchy
Address

- Route or path to entity
 - is directly specified, or
 - can be inferred

- Independent of who or what is locating entity

- Topological specification
Example

Path from blue to brown is (R,D,D,D,R,R,R,R)

Is (R,D,D,D,R,R,R,R) an address?
No! -- not an address, because it depends on starting point
Example

Address of is (6,5)

Route from can be inferred
Reference

Abstract representation of an entity

Interaction is with representation

- infrastructure arranges redirection to actual entity
- especially appropriate for things that move

Example

- A Cell phone number is a reference.
- A Wired phone number is an address.
Name services

1. name
2. address or reference
3. interaction
Markup languages
Definition

A *markup language* describes the structure of a document

- Based on tags
- Tags denote structural elements like sections, subsections, figures, etc

Internationally standardized, so application independent
Example: HTML

```html
<html>
<h1> Super Widget </h1>
<h2> Widgets Incorporated </h2>
<em> 123456789 </em>
<br>
<p> $300 </p>
</html>
```

Super Widget

Widgets Incorporated

123456789

$300
Example: XML

Tags Emphasize what the things *mean* rather than how to *format* their Presentation.

```xml
<xml>
  <product>
    <model> Super Widget </model>
    <make> Widgets Incorporated </make>
    <sku> 123456789 </sku>
    <price> $300 </price>
  </product>
</xml>
```
XML in Ecommerce example

<xml>
 <product>
 <model>Super Widget</model>
 <make>Widgets Incorporated</make>
 <sku>123456789</sku>
 <price>$300</price>
 </product>
</xml>

From each Supplier sent in XML

Product info

Supplier

Stuff4U

Retailer

Super Widget
$300

Amazing Gadget
$500

Consumer
XML in ecommerce example 2

<xml>
 <product>
 <model> Super Widget </model>
 <make> Widgets Incorporated </make>
 <sku> 123456789 </sku>
 <price> $300 </price>
 </product>
</xml>

Product info from each supplier sent in XML recognized and managed by SCM software.
Family lineage

SGML

- Standardized in mid 80s by ISO

HTML

- Introduced in Early 90s
- Emphasizes formatting and presentation of documents

XML

- Proposed in mid 90s
- Emphasizes structure of documents
- Purpose- and industry-specific extensions