Outline For Today

- Class Announcements
- Student Presentations
- Finish Chapter 7
- Start Ch 11, 15
Class announcements

- **Database assignment out**
 - (Due in 19 days.)

- **Access Database tutorial (BE 109)**
 - Thursday 2-4
 - Friday 4-6
 - Please go to session you signed up for. If you indicated “indifferent,” go to the Friday session.

- **Read MySQL** and finish Ch 15 Case for Monday.

- **Student Presentations Monday**
 - Lei, Miaoting (news)
 - Lo, Christopher Jing-Ping (mySQL case)
 - Please – no more stories on MAC OS!
Database Project (due May 23)

- Recommend a PDA for SoE to buy for students. (This is pretend!)
- Design a Survey
 - Give to at least 20 friends/students
 - Collect data into MS Access Database
- Analyze data to recommend
 - Brand, Model, Features
- Report
 - 1 page summarizing final recommendation
 - 3-4 page analysis
 - Also turn in: Access files, and all survey forms
Student Presentations

Moya, Antonio Julian

Shen, David
Standardization
Purpose of a standard?

- Allow products or services from different suppliers or providers to be interoperable
Scope of a standard

Included:
- interfaces (physical, electrical, information)
- architecture (reference model)
- formats and protocols (FAP)
- compliance tests (or process)

Excluded:
- implementation
- (possibly) extensions
Reference model

Decide decomposition of system
- where interfaces fall

Defines the boundaries of competition and ultimately industrial organization
- competition on the same side of an interface
- complementary suppliers on different sides
- hierarchical decomposition at the option of suppliers
- (possibly) optional extensions at option of suppliers
Some issues

Once a standard is set

- becomes possible source of industry lock-in; overcoming that standard requires a major (~10x?) advance
- may lock out some innovation

In recognition, some standards evolve

- IETF, CCITT (modems), MPEG
- backward compatibility
Types of standards

de jure
- Sanctioned and actively promoted by some organization with jurisdiction, or by government

de facto
- Dominant solution arising out of the market
- Voluntary industry standards body

Industry consortium
Common or best practice

Examples?
Examples

de jure
- GSM, ISDN Telephone interface

de facto
- Hayes command set, Windows API, Pentium instruction set, Ethernet

Voluntary industry standards body
- OMG/CORBA, IAB/IETF, IEEE

Industry consortium
- W3C/XML, SET

Best practice
- Windowed GUI

Slide adapted from slides for *Understanding Networked Applications*
By David G Messerschmitt. Copyright 2000. See copyright notice
The changing process

- As technology and industry move more quickly, the global consensus standards activity has proven too unwieldy
 - e.g. ISO

- “New age” standards activities are more informal, less consensus driven, a little less political, more strategic, smaller groups
 - e.g. OMG, IETF, ATM Forum, WAP

Programmable/extensible approaches for flexibility
- e.g. XML, Java
Old giving way to the new

Slide adapted from slides for Understanding Networked Applications By David G Messerschmitt. Copyright 2000. See copyright notice
Reasons for change

- From government sanction/ownership to market forces
 - Increasing fragmentation
 - Importance of time to market

Greater complexity

- Less physical/performance constraint for either hardware or software
Lock-in

(Particularly open) standards reduce consumer lock-in

- Consumers can mix and match complementary products

Increase supplier lock-in

- Innovation limited by backward compatibility
- e.g. IP/TCP, x86, Hayes command set
Network effects

Standards can harness network effects to the industry advantage

- Revenue = (market size) x (market share)

Increases value to customer

Increases competition

- Only within confines of the standard
- But forces customer integration or services of a system integrator

Slide adapted from slides for *Understanding Networked Applications* by David G Messerschmitt. Copyright 2000. See copyright notice.
What are examples of standards that serve to tame network effects?

- Internet protocols
- XML
- CORBA
- DVD
- others?
Why standards?

de jure are customer driven to reduce confusion and cost
de facto standards are sometimes the result of positive feedback in network effects

Customers and suppliers like them because they

- increase value
- reduce lockin

Governments like them because they

- promote competition in some circumstances
- May believe they can be used to national advantage
Approaches

Consensus
- ISO

Collaborative design
- MPEG

Competitive “bake off”
- IETF

Coordination of vendors
- OMG
Open Standards

- Open standard – a standard that is well documented, unencumbered by intellectual property rights and restrictions, and available to any vendor.

- What are the advantages?

- What are the disadvantages?
Why companies participate

Pool expertise in collaborative design
- e.g. MPEG

Have influence on the standard

Get technology into the standard
- Proprietary, with expectation of royalties
- Non-proprietary

Reduced time to market

Slide adapted from slides for Understanding Networked Applications by David G Messerschmitt. Copyright 2000. See copyright notice
Standards applied to Business Processes?

Can you standardize business processes?

Yes!:

- **ISO 9000**
 - A set of standardized business processes for Quality Management.
 - Supports TQM (Total Quality Management)

- **RosettaNet**
 - A set of standardized business processes, and accompanying standardized data interfaces/formats for conducting e-business.
Chapter 11

by

David G. Messerschmitt
Algorithms and protocols

by
David G. Messerschmitt
Algorithm

Specified sequence of steps that

- accomplish a designated task
- in a finite number of steps

Representation:

- simple algorithm: flowchart
- complicated algorithm: program
Example: one turn at monopoly

1. Start turn
2. Throw dice
3. Move token number of squares indicated on dice
4. Land on “go to jail”?
 - Yes: Move to “jail” square
 - No: Do not move; follow policies for square (like “pay rent”)
5. Finish turn
Algorithm building blocks

Sequence:
- Start
- Action
- Action
- Action
- Finish

Selection:
- Start
- Decision
- Action
- Action
- Finish
- Finish

Loop:
- Start
- Action
- Test
- Finish

Programming languages support these three building blocks.
Protocol

- Distributed algorithm ...
- Realized by two or more modules to coordinate their actions or accomplish some shared task
- **Module interoperability requires a protocol**
 - Prescribed order of method invocations
 - Part of interface documentation
Monopoly players protocol

This is a protocol interaction diagram
Application and infrastructure

The application defines its own application-level protocols.

Internally, the network uses protocols to implement the services it provides.
Three simple protocols

One-way message: send-receive
Two-way interaction: request-response
Push: publish-subscribe
Client Server

Time

send

receive

request

response

subscribe

responses
Example: HTTP

☆ User activates URL

⇒ HTTP request

HTTP client (browser)

HTTP server

HTML documents

ıldığı durumda HTML veya 'helper application' olarak bilinen yardımcı uygulama ile ilerlenir.

œ Browser displays document (if HTML) or invokes “helper application”

⇒ HTTP response (embedded document)
Locating things

by

David G. Messerschmitt
Three ways of locating things

Name
- “Joe Bloe”

Address
- “1299 Hearst St, Berkeley, CA”

Reference
- “Postmaster of Berkeley CA”
Name

- Symbolic (character string) representation
- Easy for people to remember or guess
- Identifies but does not locate directly
 - Distinction important for mobile entities
- Not unique: entities can have more than one name (called aliases)
Hierarchical names

Hierarchy makes names easier to remember or guess

Host domain names:

- “info.sims.berkeley.edu”
- designates administrative hierarchy

File names:

- “c:\My Documents\Docs\Resume.doc”
- designates folder hierarchy
Address

- Route or path to entity
 - is directly specified, or
 - can be inferred
- Independent of who or what is locating entity
- Topological specification
Example

Path from to is (1,2,2,2,1,1,1,1)

Not an address, because it depends on starting point
Example

Address of 🟢 is (6,5)

Route from 🟢 can be inferred
Abstract representation of an entity
Interaction is with representation
- infrastructure arranges redirection to actual entity
- especially appropriate for things that move
Name services

1. name

2. address or reference

3. interaction
Chapter 15

by

David G. Messerschmitt
Databases

by

David G. Messerschmitt
Databases

Treat data as a separate asset
- May be shared by multiple applications

Provide protection and integrity features appropriate to mission-critical data
- Access control
- Integrity constraints
- Persistence
- etc.
Two capabilities

- **Aggregation**: accessing multiple databases
- **Sharing**: two or more applications accessing the same databases
Relational table

A relational table is a data structure that organizes information into rows and columns. Each row represents a record, and each column represents a field. The table is typically represented as a two-dimensional array, where the rows correspond to individual records and the columns correspond to fields.

Table: Employee

<table>
<thead>
<tr>
<th></th>
<th>Name</th>
<th>Address</th>
<th>Dept</th>
</tr>
</thead>
<tbody>
<tr>
<td>Record</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Field</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Database operations

Each operation results in a new table, so they can be concatenated.

"PROJECT"

"SELECT"
Database Operations

<table>
<thead>
<tr>
<th>Employees</th>
<th></th>
<th>Departments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Dept ID</td>
<td>Dept Name</td>
</tr>
<tr>
<td>Alice</td>
<td>1</td>
<td>Engineering</td>
</tr>
<tr>
<td>Bob</td>
<td>1</td>
<td>Engineering</td>
</tr>
<tr>
<td>Chris</td>
<td>2</td>
<td>Sales</td>
</tr>
</tbody>
</table>

JOIN
SQL interface

- SQL (Structured Query Language)
- Presents single abstract interface to the application logic
- Standardized, not vendor specific

- Encapsulates various internal details
 - Data partitioning and replication
 - Host mapping
 - File representation
 - etc.
<table>
<thead>
<tr>
<th>Year</th>
<th>City</th>
<th>Accommodation</th>
<th>Tourists</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002</td>
<td>Oakley</td>
<td>Bed&B Breakfast</td>
<td>14</td>
</tr>
<tr>
<td>2002</td>
<td>Oakley</td>
<td>Resort</td>
<td>190</td>
</tr>
<tr>
<td>2002</td>
<td>Oakland</td>
<td>Bed&B Breakfast</td>
<td>340</td>
</tr>
<tr>
<td>2002</td>
<td>Oakland</td>
<td>Resort</td>
<td>230</td>
</tr>
<tr>
<td>2002</td>
<td>Berkeley</td>
<td>Camping</td>
<td>120000</td>
</tr>
<tr>
<td>2002</td>
<td>Berkeley</td>
<td>Bed&B Breakfast</td>
<td>3450</td>
</tr>
<tr>
<td>2002</td>
<td>Berkeley</td>
<td>Resort</td>
<td>390800</td>
</tr>
<tr>
<td>2002</td>
<td>Albany</td>
<td>Camping</td>
<td>8790</td>
</tr>
<tr>
<td>2002</td>
<td>Albany</td>
<td>Bed&B Breakfast</td>
<td>3240</td>
</tr>
<tr>
<td>2003</td>
<td>Oakley</td>
<td>Bed&B Breakfast</td>
<td>55</td>
</tr>
<tr>
<td>2003</td>
<td>Oakley</td>
<td>Resort</td>
<td>320</td>
</tr>
<tr>
<td>2003</td>
<td>Oakland</td>
<td>Bed&B Breakfast</td>
<td>280</td>
</tr>
<tr>
<td>2003</td>
<td>Oakland</td>
<td>Resort</td>
<td>210</td>
</tr>
<tr>
<td>2003</td>
<td>Berkeley</td>
<td>Camping</td>
<td>115800</td>
</tr>
<tr>
<td>2003</td>
<td>Berkeley</td>
<td>Bed&B Breakfast</td>
<td>4560</td>
</tr>
<tr>
<td>2003</td>
<td>Berkeley</td>
<td>Resort</td>
<td>419000</td>
</tr>
<tr>
<td>2003</td>
<td>Albany</td>
<td>Camping</td>
<td>7650</td>
</tr>
<tr>
<td>2003</td>
<td>Albany</td>
<td>Bed&B Breakfast</td>
<td>6750</td>
</tr>
</tbody>
</table>

- Entries are simple data types or compositions of those types
- Integrity constraints
Object-relational database

<table>
<thead>
<tr>
<th>A column can store object instances of a given class rather than data of a given simple or compound data type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Because of the table structure, SQL can be extended to this case</td>
</tr>
<tr>
<td>Standard SQL queries can be extended to methods returning simple data types</td>
</tr>
<tr>
<td>Many other good ideas</td>
</tr>
</tbody>
</table>
Benefits of ORDBMS

Extension: manage arbitrarily complex data types
Migration: preserve and extend existing databases
Preserve SQL interface
 - OR extensions in latest standard
All the benefits/experience of earlier databases
 - Access control, data integrity, persistence, etc.
Killer app: Behind Web/CGI
 - Images, video, audio, animation, applets, etc.