Outline For Today

- Class Announcements
- Student Presentations
- Business Paper Suggested Sources
- Cash flows
- Computer Industry Structure

Class announcements

- Assignment 4 due Wednesday

- Reading for Wednesday:
 - Chapter 11.1, 11.2, 15

- Student Presentations Wednesday
 - Moya, Antonio Julian
 - Shen, David

Suggested Research sources

- ABI/Inform
 - http://library.ucsc.edu/Zope/eresources/bytooll/articlesdatabases

- 10K reports
 - http://www.morningstar.com/
 - Lookup company, click SEC filings

Infrastructure and Applications

Infrastructure

- Equipment and/or software used by many applications

Applications

- Provide specific capabilities and features serving individual users.
Two ways to design a system

1. Decomposition from system requirements
2. Assembly from available components

Available components

Component: A subsystem purchased "as is" from an outside vendor
(Alternative – building your own subsystem)

A component implementation is encapsulated (although often configurable)

Examples of components

- Computer
- Disk drive
- Network
- Network router
- Operating system
- Integrated circuit
- Database management system

Why is a component implementation encapsulated?

Interoperability

- Components are interoperable when they interact properly to achieve some desired functionality
- Increasingly component interoperability cannot be dependent on integration, or is dependent on end-user integration
 - PC and peripherals
 - Enterprise, inter-enterprise, consumer applications
 - Role for standardization

Outsourcing

- Outsourcing: A subsystem design is contracted to an outside vendor
- Responsibility is delegated

System integration

- Architecture → subsystem implementation on/or component purchase → system integration
- Bring together subsystems and make them cooperate properly to achieve desired system functionality
 - Always requires testing
 - May require modifications to architecture and/or subsystem implementation
System Integration

- Three types of suppliers:
 - Component Suppliers
 - Custom Subsystem Developers
 - System Integrators
- (Some suppliers are 2 or even 3 of above.)
- Examples?

Buy vs. Make

- Can either buy or custom design a subsystem
- A sub-system that is purchased is called a component
 - Components most likely to be available when functionality is common, well defined, and accepted.
 - Components are often highly configurable
- Example: ERP application

Two ways to sell

<table>
<thead>
<tr>
<th>Product</th>
<th>Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product</td>
<td>Service</td>
</tr>
<tr>
<td>Customer installed and</td>
<td>Functionality provided</td>
</tr>
<tr>
<td>operated</td>
<td>over a wide-area network</td>
</tr>
<tr>
<td>Often (but not</td>
<td>Often (but not necessarily)</td>
</tr>
<tr>
<td>necessarily) sold or</td>
<td>necessarily) sold by</td>
</tr>
<tr>
<td>licensed at a fixed price</td>
<td>subscription</td>
</tr>
</tbody>
</table>

Four possibilities

<table>
<thead>
<tr>
<th>Application</th>
<th>Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microsoft</td>
<td>Hotmail</td>
</tr>
<tr>
<td>Office</td>
<td></td>
</tr>
<tr>
<td>Application</td>
<td></td>
</tr>
<tr>
<td>Infrastructure</td>
<td>Internet DNS</td>
</tr>
</tbody>
</table>

Examples of unbundled ASP model

- Telephony
- Web-based information access and commerce
- Yahoo: Web-based calendar
- Hotmail: Web-based email
- Schwab: Web-based stock trading
Unbundled ASP model

Advantageous to user
- Proven way to reduce installation, integration, and maintenance costs
- Contractual obligation for availability and quality
- Location independence

Unbundled ASP model (con’t)

Advantages to supplier
- Ongoing revenue stream supporting upgrade and maintenance
- Usage-based revenue better aligned with user’s value proposition
- Opportunity for price discrimination, advertising revenue, etc.

Some pricing alternatives

- Price discrimination?
- Usage dependent?
- Terms and conditions: fixed, leasing, per-use, subscription, warranty, service level agreements
- Bundles: maintenance, support, releases, provisioning and operations
- Who pays? sometimes not the end user

Infrastructure acquisition

- Build and operate
- Build but do not operate
- Do not build but operate
- Neither

Application acquisition

- Develop internally
- Buy as product
- Contract development
- Product w/ customization

Stovepipe Architecture

- When a single supplier provides an all encompassing application solution (complete with infrastructure) it is called
 - A **stovepipe architecture**
 - A **Turnkey Solution**
- Alternative: separate infrastructure that can support many applications
 - **Integrated infrastructure**
From stovepipe to layering

Stovepipe vs. Integrated Infrastructure
- What are some examples of each?
- What are the advantages of each approach?

Vertical Integration vs. Diversification
- A company is **vertically integrated** when it makes rather than buys the subsystems in its products.
- A **diversified** company produces products across different industry segments.

Vertical Integration vs. Diversification
- Why do customers favor less vertical integration?
 - Prefer competition amongst component suppliers
 - Mix and match components
 - Reduced lock in
- Disadvantages??
 - Customer needs to integrate components from different suppliers.

Vertical Integration vs. Diversification
- Why do customers favor diversification?
 - Reduce coordination costs by having to deal with fewer suppliers.

Today's supplier structure

- Applications
- Frameworks and components
- Middleware
- Infrastructure (network, OS) software
- Equipment (network, computers)
- Semiconductors, components
Role of Venture Capital in Computing.
- Open interfaces allow small firms to contribute components without having to develop entire solution.
- Fast decision making and no supplier lock-in.
- Other Advantages?

Standardization

Purpose of a standard
Infrastructure:
- Allow products or services from different suppliers or providers to be interoperable
Application:
- Enable applications to run across uncoordinated administrative domains

Scope of a standard
Included:
- architecture (reference model)
- interfaces (physical, electrical, information)
- formats and protocols (FAP)
- compliance tests (or process)
Excluded:
- implementation
- (possibly) extensions

Reference model
Decide decomposition of system
- where interfaces fall
Defines the boundaries of competition and ultimately industrial organization
- competition on the same side of an interface
- complementary suppliers on different sides
- hierarchical decomposition at the option of suppliers
- (possibly) optional extensions at option of suppliers

Some issues
Once a standard is set
- becomes possible source of industry lock-in; overcoming that standard requires a major (~10x?) advance
- may lock out some innovation
In recognition, some standards evolve
- IETF, CCITT (modems), MPEG
- backward compatibility