Open vs. Proprietary Standards

- Open standard – a standard that is well documented, unencumbered by intellectual property rights and restrictions, and available to any vendor.
- What are the advantages?
- What are the disadvantages?

Databases

Treat data as a separate asset
- May be shared by multiple applications
- Provide protection and integrity features appropriate to mission-critical data
- Access control
- Integrity constraints
- Persistence
- etc.

Two capabilities
Relational table

Table

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>Dept</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SQL interface

- **SQL (Structured Query Language)**
- Presents single abstract interface to the application logic
 - For manipulating, and extracting data from database
 - Standardized, not vendor specific
- Encapsulates various internal details
 - Data partitioning and replication
 - Host mapping
 - File representation
 - etc.

Database operations

- Each operation results in a new table
- "PROJECT" and "SELECT"

Database Operations

<table>
<thead>
<tr>
<th>Passengers</th>
<th>Departments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Dept ID</td>
</tr>
<tr>
<td>Alice</td>
<td>1</td>
</tr>
<tr>
<td>Bob</td>
<td>1</td>
</tr>
<tr>
<td>Chris</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Dept Name</th>
<th>Dept ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>Engineering</td>
<td>1</td>
</tr>
<tr>
<td>Bob</td>
<td>Engineering</td>
<td>2</td>
</tr>
<tr>
<td>Chris</td>
<td>Sales</td>
<td>2</td>
</tr>
</tbody>
</table>

mySQL

What does mySQL make?

How Successful is mySQL?
- Visibility: Fortune magazine, more mentions on www
- Reaction from giants
- Revenue growth 2001 700k, 2002 6.2m, 2003 10m
- Good performance reviews
- Recent SAP alliance
- But Market share tiny: $10 million out of $10 billion market!

Why Success?
- Good Technology
- Large DBMS bloated with features most don't need
- Innovative OSS model
mySQL

How does OSS work?

Two Types of License:
- GPL
 - Free
 - No Support
 - Any software that uses MySQL as a module must itself be made GPL.
- Commercial License
 - Support
 - Could be distributed with non-open source software
 - Not Free:
 - MySQL: Classic $250, Pro $495 (for ~ 50 users)
 - Compare to:
 - MSFT: $3150 single proc for 50 users
 - IBM: $33000 single proc for 50 users
 - Oracle: $40000 single proc for 50 users

Aside: DB's in different software stacks

<table>
<thead>
<tr>
<th>General Software Stack</th>
<th>ERP Software Stack</th>
<th>Web Application Software Stack</th>
<th>Banking Software Stack</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application</td>
<td>SAP or Oracle, Axtapa, etc.</td>
<td>Proprietary Business Logic, Apache Web Server</td>
<td>Proprietary Banking App.</td>
</tr>
<tr>
<td>Middleware</td>
<td>Oracle or MySQL, IBM, etc</td>
<td>MySQL or other DB</td>
<td>Oracle or other DB</td>
</tr>
<tr>
<td>Operating System</td>
<td>MS Windows or other OS</td>
<td>Linux or other OS</td>
<td>IBM z/OS or other OS</td>
</tr>
</tbody>
</table>

- Which companies are competitors?
- Which are complimenters?
- Which are both?

mySQL

- Which segments of market is mySQL strong in?
 - Large Companies or Small Companies?
 - Web applications or Critical Enterprise data?

- Why would a major enterprise want to pay so much more for an Oracle or IBM DB?

My SQL: market

<table>
<thead>
<tr>
<th>Small 20%</th>
<th>Medium 30%</th>
<th>Large 50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enterprise wide data 90%</td>
<td>Microsoft</td>
<td>Oracle IBM</td>
</tr>
<tr>
<td>Web Sites 10%</td>
<td>My SQL Cost</td>
<td>Reliability, Scalability, Support, Longevity</td>
</tr>
</tbody>
</table>

How should mySQL grow in order to meet its stated goal of getting to $100 million in revenue?

My SQL: Growth Strategy

<table>
<thead>
<tr>
<th>Small 20%</th>
<th>Medium 30%</th>
<th>Large 50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enterprise wide data 90%</td>
<td>Microsoft</td>
<td>Oracle IBM</td>
</tr>
<tr>
<td>Web Sites 10%</td>
<td>My SQL Cost</td>
<td>Reliability, Scalability, Support, Longevity</td>
</tr>
</tbody>
</table>

- Lack of Brand identity in this segment
- MySQL lacks the organization to offer support
- Large enterprises have high switching costs

Figures adapted from "Teaching Note for MySQL Open Source Database," 6/1/04, Stanford GSB.
My SQL: Growth Strategy

<table>
<thead>
<tr>
<th></th>
<th>Small 20%</th>
<th>Medium 30%</th>
<th>Large 50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enterprise wide data</td>
<td>Microsoft</td>
<td>Oracle IBM</td>
<td>Support Longevity</td>
</tr>
<tr>
<td>Web Sites 10%</td>
<td>MySQL Cost</td>
<td>Maybe?</td>
<td></td>
</tr>
</tbody>
</table>

- Many of these customers already using MySQL with websites
- Less emphasis on global organization
- Leverage SAP alliance
- Up against Microsoft.

Figure Adapted from “Teaching Note for MySQL Open Source Database,” 6/1/04, Stanford GSB.

My SQL: Growth Strategy

<table>
<thead>
<tr>
<th></th>
<th>Small 20%</th>
<th>Medium 30%</th>
<th>Large 50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enterprise wide data</td>
<td>Microsoft</td>
<td>Oracle IBM</td>
<td>Reliability Scalability Support Longevity</td>
</tr>
<tr>
<td>Web Sites 10%</td>
<td>MySQL Cost</td>
<td>Maybe?</td>
<td></td>
</tr>
</tbody>
</table>

- Builds on existing brand and strengths
- Market not so big

Figure Adapted from “Teaching Note for MySQL Open Source Database,” 6/1/04, Stanford GSB.

Networks

What are some examples of communications networks?

- Public Telephone Network
- Internet
- LANs (Local Area Networks)

What does a network do?

1) Transport data from one host to another.

Network Architecture

- Network architectures are layered
- Each layer
 - uses the services of the layers below
 - To offer more advanced services to layer above
- Allows layers to be designed independently
- We will talk about 3 layers next...

Network

Link

Physical
Physical Layer: Convey bits over a wire

Bits: 010110...

Voltage

0 1 0 1

Time

0 0 1 1

Voltage

1 1 0 0

Time

Sender

Wire

Noise

Receiver

Physical layer

- Other schemes for mapping a bit sequence to a physical sequence are possible.
 - These are called modulation schemes

Link Layer

- Make a Frame link out of a bit link
 - Instead of endless sequence of 1s and 0s, we want distinct packages of data that are separate from each other
- Say we want to send 2 Frames with data
 - 01010101010111010 and 101010101011010
 - Concatenate them and send them as a sequence?
 - How can the receiver tell where the new frame begins?
- Solution: insert a special sequence at the start of frame: for example: 01111110

Link Layer (cont’d)

- Also does error detection/correction
 - Insert extra information the helps the receiver to determine if the data has been corrupted.
 - Example: parity bit
 - Sender adds a 1 or zero to end of data so number of ones is always odd
 - 10011 or 10000
 - If receiver counts an even number of ones, than it knows the data was corrupted.

More Link Layer.. -- Ethernet

Want to allow multiple hosts to share a link

Host A Host B Host C Host D

How do they avoid talking at the same time?

- Don’t transmit if you hear another host transmitting
- If there is a collision, stop wait a random amount of time, and try again
- This is a Medium Access Control (MAC) Protocol

Ethernet Continued

How do the hosts on this Ethernet identify each other?

- Each host (actually each interface)
 - has a globally unique MAC address
 - Cannot be changed
Ethernet Hub

- Hub broadcasts packets on a link to all others
- As if all hosts connected to single link
- We say it is a Single collision domain
- Only one host can talk at a time

Ethernet Switch

- If switch knows where the destination is
 - Switch forwards incoming frame to destination only.
 - Otherwise, it broadcasts it to everyone.
- Thus, parallel conversations possible.

Network Layer

- A wants to send some data to C
 - Suppose A knows C’s address
 - A sends a packet towards C
 - A marks his packet with C’s address (an IP Address)

Post Office Analogy

- Look at beginning of zip code
 - Make forwarding decision
- Look at address
 - Make forwarding decision

Network Layer

- A uses Link 1 to send to B
- B looks at
 - Packet Header
 - Routing Table
Routing in the Internet

Many feasible paths from source to destination.

Routing

- Updating the routing table
- Objective: each packet gets closer to destination

Packet forwarding
- Transmitting each packet on the appropriate output link
- Based on routing table

Routing Algorithms

Routers talk to each other to build their routing tables

Routing Table has Wild Cards

Internet Routing is Hierarchical

Routing Concerns

- Long routes
- Circular routes
- Hijacking routes
- Route flapping
IP Addresses vs Mac Addresses

Hierarchical
- The beginning bits tell you which network the host is on
- Ex: UCSC addresses start with 128.114.X.X
- The last bits tell you which host of the network

Not Hierarchical
- Beginning bits tell nothing useful

Changeable
- Changes with location of Host
- 4 bytes
- Only 4.2 billion

Not Changeable
- 6 bytes
- 281 Trillion

Transport Protocols

- **The Internet is unreliable**
 - It will make a "best effort" to get your packet to its destination
- Packets can be lost because of
 - Congestion
 - Link errors
 - Routing problems

Transmission Control Protocol (TCP)

- **Retransmit mechanism for reliability**
 - Receiver sends acknowledgements to sender
 - If a packet is lost, source fails to get ACK, and then retransmits.

- **Congestion control**
 - If congestion perceived (by lost packets)
 - Source reduces its send rate
 - When loss, sender reduces send rate by half
 - Otherwise slowly increases

TCP cont'd

- **TCP port numbers**
 - TCP Header has a "port" number field
 - Helps host sort out how to route packets to applications

UDP

- For some applications packet retransmissions are not worthwhile
 - Why?
- For those applications, we use UDP
 - UDP is a transport protocol that
 - Does not do retransmissions
 - Does not do congestion control
Congestion Control

- When networks are congested, certain sessions (Source-destination pairs) should reduce offered rates.
 - Today all TCP sessions slow down when they detect packet losses.
 - UDP sessions do not slow down.
- What are some alternative strategies?
 - Have those whose applications aren’t as sensitive slow down more?
 - How would we know which are less sensitive

Pricing within the Internet

- Customer pays an ISP
 - Often Flat Rate per month
 - ISP pays a backbone AS
 - Often just flat rate, dependent on access link speed.
 - Sometimes based on total usage
 - Backbone NSPs peer with each other
 - Often for free if they exchange comparable amounts of traffic.
- Overall:
 - Internet billing today is much more course grained than telephone billing.

Domain Names

- IP addresses are inconvenient for people
 - 32 bits hard to remember
 - 128 bits very hard to remember

- Domain names
 - e.g. argus.eecs.berkeley.edu
 - Easier to remember than IP addresses
 - However, we need some way of mapping domain names to IP addresses.

Domain Name System (DNS)

- Berkeley Name Server
- UCSC Name Server
- EECS Name Server
- SoE Name Server

Hierarchy in Addresses vs. Names

- Addresses hierarchical in topology
 - Maximize "wild cards" and distribute address administration

- Names hierarchical in administration
 - Single administered organizations often distributed topologically (e.g. ibm.com)

Transport Protocols

- The Internet is unreliable
 - It will make a "best effort" to get your packet to its destination
- Packets can be lost because of
 - Congestion
 - Link errors
 - Routing problems
OSI Layers

- Application: Internet Explorer, Outlook Email, Real Player, ...
- Presentation
- Session
- Transport: TCP, UDP
- Network: Internet Protocol (IP), ...
- Link: Ethernet, Wi-Fi, SONNET, ...
- Physical: Modulation Schemes: QAM, OFDM, etc...

Some Typical Topologies

Home Network

- Telephone
- DSL Modem
- Telephone Line (to local Office)
- Ethernet Switch
- Router
- Web Site Server
- T1 Modem
- T1 Line
- Local Office

Small/Medium Business

- Ethernet Switch
- Web Site Server
- Router with Firewall
- T1 Modem
- T1 Line
- Local Office

ISP Topology

- Telephone Company Local Office
- Local Loop
- Telephone Switch
- DSL Modem
- Leased Line to NAP
- ISP Point of Presence

Network Service Provider

- Network Access Point
- Network Access Point

Large E-Business

- Load Balancer
- Web Servers
- Application Servers
- Databases
- Customers
- Merchandise
- Orders
- Interconnected with Gigabit Ethernet or other technology
- Logic Flow of Interaction
- Presentation Logic (Assembling Web page)
- Incoming HTTP Requests
Web Caching
- Speed up web page loading by storing previously seen components locally

Web server
Cache on Hard Drive

Web Caching
- Speed up web page loading by storing previously seen components locally

Web server
Cache on Hard Drive

Akamai Case
1) Akamai's technology can be best classified as
 - A) Content Delivery Network
 - B) Database Management System
 - C) Thin Client
2) Akamai's customers included
 - A) Home users wanting faster Internet access
 - B) Companies with content heavy web sites
 - C) Companies wanting a simple, inexpensive database
3) Which is _not_ one way Akamai sold its product/service?
 - A) "Partner" firms like companies who do system integration
 - B) Retailers like Fry's and Best Buy
 - C) A sales force employed by Akamai

Akamai Case
1) Akamai's technology can be best classified as
 - A) Content Delivery Network
 - B) Database Management System
 - C) Thin Client
2) Akamai's customers included
 - A) Home users wanting faster Internet access
 - B) Companies with content heavy web sites
 - C) Companies wanting a simple, inexpensive database
3) Which is _not_ one way Akamai sold its product/service?
 - A) "Partner" firms like companies who do system integration
 - B) Retailers like Fry's and Best Buy
 - C) A sales force employed by Akamai

Internet Bottlenecks
- First Mile (Server Capacity) - 70% of website performance problems according to one study
- Backbone - Plentiful, but some shortage within metropolitan areas
- Peering - Exchange of traffic between NSPs
- Last Mile to home
 - 56 K modems are slow
 - Shared LAN limitations

Internet Bottlenecks
- First Mile (Server Capacity) - 70% of website performance problems according to one study
- Backbone - Plentiful, but some shortage within metropolitan areas
- Peering - Exchange of traffic between NSPs
- Last Mile to home
 - 56 K modems are slow
 - Shared LAN limitations

Solutions
- Expand Bandwidth
 - Being done
- Mirroring web cites
 - Put exact copy of same web page to multiple servers
 - Tricky to duplicate content
- Caching
 - Problem: Stale Content
 - Problem: Hard to count "click throughs"
- Content Distribution Networks...

Solutions
- Expand Bandwidth
 - Being done
- Mirroring web cites
 - Put exact copy of same web page to multiple servers
 - Tricky to duplicate content
- Caching
 - Problem: Stale Content
 - Problem: Hard to count "click throughs"
- Content Distribution Networks...
Freeflow

- Deployed in 1999
- Akamai Infrastructure
 - 13000 servers in 954 networks by 2001
- Customers -
 - Large Commercial Websites
- Revenue model - $2000 per mbps served
 - (For comparison, normal Internet access cost 500 mbps at time)

2000 Financials

- $196 Million Loss (before special charges)
- $90 million revenue
- %20 gross margin, after deducting
 - server depreciation
 - payments to network partners
 - Data center space
 - But, most expenses shouldn’t grow at same rate as number of customers, so margin should improve
 - $201.5 million S&A
 - (selling general and administrative)
 - (largely sales force cost)
 - Again, this might not grow at same rate as the number of customers.
 - $40 million R&D

Competition

- Hosting firms (substitute)
 - Exodus
- Other CDNs
 - Sandpiper, Adero, Mirror Image
- Content Alliances
 - Akamai’s competitors banded together to share networks

2001 Market Changes

Bad
- Dot-coms bust
- Customers leave
 - "churn rate goes to 22% per quarter"

Good
- Hosting firms go bust (exodus)
- Some CDN competitors go bust.
- Competing CDN alliances mired in problems

EdgeSuite

- Assemble dynamic pages at edges rather than just serve heavy objects
- Value proposition
 - Performance improvement
 - Cost and complexity reduction
 - Scalability
 - Security
 - Pricing – higher than old service
 - Soon edge suite dominated revenue
Technology

Dynamic CDN technology: ESI (edge sides includes)

Develop as open standard why?

Akamai not big and credible enough to force a de-facto standard on market

Marketing

- Difference in selling old vs new products:
 - Old product
 - Geared toward speeding up websites
 - Revenues of their clients depended on speed
 - Easier to get sale
 - New Product
 - Simplify company IT function
 - Cost vs. revenue center
 - Harder sell. More data driven.
 - Consequently new product needs more professional sales force
- Channels?
 - Distribution Partners (IBM) credibility
 - Direct Sales Force too

Recent Performance

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Revenue (in millions, except per share data)</td>
<td>$234,821</td>
<td>$268,229</td>
<td>$244,570</td>
<td>$251,234</td>
<td>$259,788</td>
</tr>
<tr>
<td>Total gross profit (in millions)</td>
<td>101,001</td>
<td>117,725</td>
<td>121,980</td>
<td>2,277,008</td>
<td>689,210</td>
</tr>
<tr>
<td>Net income (loss) (in millions)</td>
<td>16,364</td>
<td>129,782</td>
<td>128,871</td>
<td>2,240,057</td>
<td>1,080,700</td>
</tr>
<tr>
<td>Net income (loss) attributable to common shareholders (in millions)</td>
<td>16,364</td>
<td>(129,782)</td>
<td>(128,871)</td>
<td>(2,240,057)</td>
<td>(1,080,700)</td>
</tr>
</tbody>
</table>