ISM 50 - Business Information Systems

Lecture 6

Instructor: John Musacchio

UC Santa Cruz

October 16, 2007
Class Announcements

- Reading for next time
 - Cisco Case

- Folio 1 due today
 - (only those not assigned a presentation)

- Assignment 2 due Thursday

- Business Paper Proposal Due in 1 week!
Class Announcements

- Project proposals due in 7 days!!
 - 1-2 pages
 - Give a plan what you will do
 - Cite some references, and show that you have started your research!
 - See website for more details.

- Speakers next class
 - Kevin Ortiz (Cisco Case)
 - Dino Fekaris (News)
Student Talks

Kelsey Perkins (News)

Yee Luong (News)
Frito Lay (Review)

- **Market:** Salty Snacks
 - Who owns Frito Lay?

- **Competitors:**
 - P & G (Pringles)
 - Anheuser Busch (Eagle Snacks)
 - Borden (Wise Chips)
 - Small Regionals

- **Sales Force**
 - 10000 people
 - Drive around in trucks; sell and deliver snacks
Frito Lay (Review)

- **Growth**
 - In the 70s, “double digit”
 - Mid 80s - slowed to single digit.
 - Foreign Expansion?
 - Not for Frito-Lay division, because PepsiCo has a separate international snacks div.

- **Good:**
 - Several top brands

- **Bad**
 - Monolithic national approach
Frito-Lay

- **Segmentation**
 - Supermarkets
 - “up/down street”

- **Regionalized Micro-Marketing**
 - Targeted smaller brands to regional customers

- **Hand Held Computer**
 - Small computer for each salesperson to carry around
 - Log sale transaction data.
HHC Project Good Idea?

Yes:
- Replaced optical scanner system that IBM would stop supporting soon
- Saves sales force time: 2.5 hours per week per driver
- Detailed sales data supports:
 - Regionalized marketing
 - Negotiations for shelf space with supermarkets
- Reduce errors

No:
- Expensive
 - (more than 50 million)
- Risky
 - Might not work technically
 - Sales force might not like it
 - Already upset about segmentation
- Equipment vendor might not be reliable
Frito Lay

- HHC was a $50+ million project
- How did they mitigate risks?
- Risk Mgmt
 - Pilot test of technology
 - 3 layer rollout
 - 1) essential systems
 - 2) sales compensation
 - 3) strategic uses of new data (fuzzy)
Action plan

- Region by region?
- All at once?
- Weakest or Strongest region first?
Frito Lay

HHC deployed to LA area first, a region that won a sales award. By the end of the 80’s
- HHC deployment completed
- Development of Information Systems to process HHC data to support operations.

Early 90’s re-org to decentralize decision making to different regions

1985
- Revenue: $2847
- Profit: $401

2004
- Revenue: $9091
- Profit: $2366

- Revenue growth ~ 6% per year on average
TQM: What You’d Get From 99.9% Suppliers

- At Least 20,000 Wrong Drug Prescriptions Each Year.
- More than 15,000 Newborn Babies Dropped by Doctors or Nurses Each Year.
- Unsafe Drinking Water at Least One Hour Each Month.
- No Telephone Service or Television Transmission for Nearly Ten Minutes Each Week.
- Two Short or Long Landings at O’Hare Airport Each Day.
- Nearly 500 Incorrect Surgical Procedures Each Week.
- 2,000 Lost Articles of Mail Per Hour.
TQM: What You’d Get From Six Sigma Suppliers

- One Wrong Prescription in 25 Years.
- Three Newborn Babies Dropped by Doctors or Nurses in 100 Years.
- Unsafe Drinking Water One Second Every Sixteen Years.
- No Telephone Service or Television Transmission for Nearly Six Seconds in 100 Years.
- One Short or Long Landing in Ten Years in all the Airports in the U.S.
- One Incorrect Surgical Procedure in Twenty Years.
- Thirty-five Lost Articles of Mail Per Year.
Total Quality Management

1. We are good, but we must continue to improve.

2. Individually and/or departmentally we may be very good but we must be as good in the total efforts of the entire organization.
Chapter 2 Summary

- Porter models are important as a way to evaluate competitive environment and/or internal processes.

- Use Porter strategy terminology in discussing how an industry and companies in the industry compete.
Information access

by

David G. Messerschmitt
Copyright notice

©Copyright David G. Messerschmitt, 2000. This material may be used, copied, and distributed freely for educational purposes as long as this copyright notice remains attached. It cannot be used for any commercial purpose without the written permission of the author.

Adapted from slides for Understanding Networked Applications
By David G Messerschmitt. Copyright 2000. See copyright notice
A hierarchy

Data: numbers, character strings, etc.

Information: recognizable patterns organized so as to inform or influence us in some way

Knowledge: concepts, relationships, truths, principles.

Wisdom: insight or judgement

Adapted from slides for *Understanding Networked Applications* by David G Messerschmitt. Copyright 2000. See copyright notice.
Classify these

- “XV”, “SF”, 34, “CN”, 16

- The 49-ers won Super Bowl XV by a score of 34 to 16.

- The National Football Conference wins 17 out of 20 Super Bowl’s on average.

- The best team usually wins.
Roles in information access

- Author or publisher
- Indexer or organizer
- Librarian or teacher or interpreter
- Recommender

Adapted from slides for *Understanding Networked Applications*
By David G Messerschmitt. Copyright 2000. See copyright notice
Classify these

Relative to *A Streetcar Named Desire*:
- Tennessee Williams
- Actor
- Critic
- Playbill magazine

Relative to *Understanding Networked Applications*:
- D.G. Messerschmitt
- Morgan Kaufmann
- Amazon.com

Adapted from slides for *Understanding Networked Applications*
By David G Messerschmitt. Copyright 2000. See copyright notice
Exercise

User
Author or publisher
Indexer or organizer
Librarian or teacher
Recommender

How are these roles being changed by networked computing?

Adapted from slides for *Understanding Networked Applications*
By David G Messerschmitt. Copyright 2000. See copyright notice
Push vs. pull

User

Control over what is provided
Time when it is provided

Intermediate cases:
Notification
Subscription

Publisher

Push

Pull

Adapted from slides for Understanding Networked Applications
By David G Messerschmitt. Copyright 2000. See copyright notice
Proper roles of push and pull in a workgroup

<table>
<thead>
<tr>
<th>Pull: work</th>
<th>Push: attention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brainstorming</td>
<td>Notification of topic</td>
</tr>
<tr>
<td>Accessing documents</td>
<td>Notification of document availability</td>
</tr>
<tr>
<td></td>
<td>Reminder of deadlines</td>
</tr>
</tbody>
</table>

Adapted from slides for *Understanding Networked Applications*
By David G Messerschmitt. Copyright 2000. See copyright notice.
Question

What are some differences between push and pull with respect to:

- invasiveness on the user?
- refinement of the information received?
- timeliness with which information received?
Some modalities of information access

- Pull: Search, navigate, browse
- Push: Aggregate, filter, consolidate
- Subscribe
- Delegate
- Intermediary
- Agent

Adapted from slides for *Understanding Networked Applications*
By David G Messerschmitt. Copyright 2000. See copyright notice
Aids in finding useful information

Besides the information content itself, other aids:

- reference to related information: hyperlink
- list of content: index
- description of content: metadata
- judgment of content: recommendation

Adapted from slides for *Understanding Networked Applications* by David G Messerschmitt. Copyright 2000. See copyright notice.
Exercise

Give an example of the following functions in the context of movie rentals:

Hyperlink
Index
Metadata
Recommendation
Question

Comment on the following widely held beliefs (at their time):

- “the movie will displace legitimate theater”
- “television will displace movies”
- “remote learning will displace the university campus as we know it”

What does this suggest about networked applications?

Adapted from slides for *Understanding Networked Applications*
By David G Messerschmitt. Copyright 2000. See copyright notice
Applications

- **What is an application?**
 - Computer software that performs useful capabilities for a user, organization, incorporating storage, manipulation, and communication of information.

- **An organizational application**
 - Supports an organization

- **Often called enterprise application**
 - (An enterprise is an organization with a commercial mission)
Types of organizational applications

- **Departmental**
 - Supports a single functional department
 - Example: An accounts management application for an accounting department.

- **Enterprise**
 - Support enterprise-wide processes and goals.
 - Example: coordinate information between functional departments involved in fulfilling an order.
 (or other cross functional process.)
Some Types of Organizational Applications

- **Worker Collaboration**
 - Example: video conferencing

- **Operations and Logistics**
 - Example: coordinate movements of goods between sites.

- **Decision Support**
 - Summarize info for execs.

- **Knowledge Management**
 - Organize and retrieve knowledge in company’s documents and databases
Examples

Software Merchant

- **Customer Relationship Management**
 - Maintain a case file of customer questions and complaints.
 - Website of Freq. Asked Ques. And documentation.
 - Chat application for customers to communicate with tech-support personnel.
Examples

On-Line Stock Trading

- Information Management application for paying customers
- Specialized software to interface with
 - customers
 - stock exchange
 - Customer’s bank
Some more terms

Transaction Processing Systems record and process data from business transactions.

Batch Processing - transactions are accumulated over a period of time and processed periodically.

In **Online Transaction Processing (OLTP)**, transactions are processed immediately.
Some More Terms

- A workflow application supports ongoing repetitive tasks.
 - Example: An application that passes a case summary of a customer from customer service to tech support.
So what exactly is ERP??
Early MRP

- MRP (Material or Manufacturing Resource Planning)
 - Take:
 - Product Demand forecasts
 - Inventory Balances
 - Replenishment Lead Times
 - Develop a Production schedule for a single plant
 - At this Point, it is a planning tool
Later on More capabilities added

- Order Processing
- Product Costing

- The planning tool begins to take more and more of an active roll in the business processes.
A desire to Link Across Functional Departments of firm

- Each functional department had its own legacy application
 - Programmed in different languages
 - Different Data formats

- Often some data was shared between departments by duplicating it.
MRP evolves into ERP

- A common software architecture with modules to support different business functions.
 - Accounting, finance, sales, HRM, material management, etc...

- Key features:
 - Multi-functional
 - Integrated
 - Modular
ERP Overview
ERP

- How would you design an ERP?
- Design a user interface for each module
 - Ask user to fill in certain “fields” at particular times.
 - Set up a sequence of events
 - When the sales department enters an order, that event triggers an event at the manufacturing department.
- But by doing this, aren’t we presuming a particular business process?
Questions

How standardized are organizational processes?

- Customer service
- Finance
- Manufacturing
Fundamental options

- Customize the application to existing organization?
- Mold organization to off-the-shelf application?
 - Is software a good way to propagate best practices?
Net Present Value when $i = 0$

\[
NPV = \sum_{j=0}^{\infty} x_j (1 + i)^{-j}
\]

\[
= -0.5 + 0.30 \cdot (1 + 0)^{-1} + 0.35 \cdot (1 + 0)^{-2}
\]

\[
= -0.5 + 0.30 + 0.35 = 0.15
\]

Net Present Value when $i = 10$

\[
NPV = \sum_{j=0}^{\infty} x_j (1 + i)^{-j}
\]

\[
= -0.5 + 0.30 \cdot (1 + 0.1)^{-1} + 0.35 \cdot (1 + 0.1)^{-2}
\]

\[
= -0.5 + 0.273 + 0.289 = 0.062
\]

Net Present Value when $i = 20$

\[
NPV = \sum_{j=0}^{\infty} x_j (1 + i)^{-j}
\]

\[
= -0.5 + 0.30 \cdot (1 + 0.2)^{-1} + 0.35 \cdot (1 + 0.2)^{-2}
\]

\[
= -0.5 + 0.25 + 0.243 = -0.0069
\]
Idea of RoR analysis:

What i makes NPV = 0?

\[\text{NPV} = \sum_{j=0}^{\infty} x_j (1 + i)^{-j} = 0 \]

\[= -0.5 + 0.30 \cdot (1 + i)^{-1} + 0.35 \cdot (1 + i)^{-2} = 0 \]

\[= 0.35 \cdot (1 + i)^{-2} + 0.30 \cdot (1 + i)^{-1} - 0.5 = 0 \]

Quadratic Formula: \(ax^2 + bx + c = 0 \rightarrow x = \frac{-b + \sqrt{b^2 - 4ac}}{2a} \)

\[x := (1 + i)^{-1} \]

\[(1 + i)^{-1} = \frac{-0.3 + -\sqrt{0.3^2 - 4 \cdot 0.35 \cdot (-1)}}{2 \cdot 0.35} \]

\((1+i)^{-1} = 0.8411 \text{ or } -1.69 \]

\(i = 0.188 \text{ or } -1.59 \)