Class announcements

- **Assignment 4 out!**
 - Due next Tuesday (November 8th)

- **Reading for Wednesday:**
 - Chapter 11.1 - 11.2, 15.1-15.2

- **Student Presentations Thursday**
 - Keith Lucitt
 - Ryan Fargo
Student Presentations

- Melinda Hsieh
- Salvador Barrios
Suggested Research sources

- ABI/Inform
 - http://library.ucsc.edu/Zope/eresources/bytool/ArticleDatabases

- 10K reports
 - http://www.morningstar.com/
 - Lookup company, click SEC filings
Architecture

HEADQUARTERS
Airline Dataserver

HHC Server

Airline Intranet

Wireless Link

HHC

Airline Dataserver
Two ways to design a system

- **Decomposition from system requirements**
- **Assembly from available components**

Slide adapted from slides for *Understanding Networked Applications* by David G Messerschmitt. Copyright 2000. See copyright notice.
A component implementation is encapsulated (although often configurable)

Component: A subsystem purchased “as is” from an outside vendor

(Alternative – building your own subsystem)

Slide adapted from slides for *Understanding Networked Applications*
By David G Messerschmitt. Copyright 2000. See copyright notice
The Palm OS we are buying “off the shelf” and integrating into our architecture. The Palm OS is a component.
Other Examples of components

Computer
Disk drive
Network
Network router
Operating system
Integrated circuit
Database management system

Why is a component implementation encapsulated?

Slide adapted from slides for Understanding Networked Applications
By David G Messerschmitt. Copyright 2000. See copyright notice
Interoperability

- Components are interoperable when they interact properly to achieve some desired functionality.

- Increasingly, component interoperability cannot be dependent on end-user integration.
 - PC and peripherals
 - Enterprise, inter-enterprise, consumer applications
 - Role for standardization
Outsourcing: A subsystem design is contracted to an outside vendor.

Responsibility is delegated.
Suppose we choose to pay another firm to develop the user interface. This is called **Outsourcing**. Why would we do this?
System Integration

- Suppose we
 - Bring together all these subsystems
 - and test them...

- This is called **System Integration**
System integration

- Bring together subsystems;
- make them work together;
- to achieve a goal.

Requires

- Testing
- Making modifications to
 - architecture and/or
 - subsystem implementation
Can System Integration be Outsourced?

- Of course!
Supplier Types

- Three types of suppliers:
 - Component Suppliers
 - Custom Subsystem Developers
 - System Integrators

- (Some suppliers are 2 or even 3 of above.)
Two ways to sell Software

Product

- Customer installed and operated
- Often (but not necessarily) sold or licensed at a fixed price

Service

- Functionality provided over a wide-area network
- Often (but not necessarily) sold by subscription

Slide adapted from slides for *Understanding Networked Applications*
By David G Messerschmitt. Copyright 2000. See copyright notice.
Recall: Infrastructure and Applications

Infrastructure

- Equipment and/or software used by many applications

Applications

- Provide specific capabilities and features serving individual users.
Four possibilities

<table>
<thead>
<tr>
<th>Product</th>
<th>Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microsoft Office</td>
<td>Hotmail</td>
</tr>
<tr>
<td>Application</td>
<td></td>
</tr>
<tr>
<td>Infrastructure</td>
<td></td>
</tr>
<tr>
<td>Personal computer</td>
<td>Internet DNS</td>
</tr>
</tbody>
</table>

Slide adapted from slides for *Understanding Networked Applications* by David G Messerschmitt. Copyright 2000. See copyright notice.
Application Service Provider

- **Two types**
 - **Bundled**
 - An infrastructure provider bundles applications with their infrastructure
 - **Example**: AOL, telephony service providers
 - **Unbundled**
 - A provider of an application service without providing an infrastructure service
 - **Examples?**
Examples of unbundled ASP model

- Yahoo: Web-based calendar
- Hotmail: Web-based email
- Schwab: Web-based stock trading
Unbundled ASP model

Advantageous to user

- Proven way to reduce installation, integration, and maintenance costs
- Contractual obligation for availability and quality
- Location independence
Unbundled ASP model (con't)

Advantages to supplier

- Ongoing revenue stream supporting upgrade and maintenance
- Usage-based revenue better aligned with user's value proposition
- Opportunity for price discrimination, advertising revenue, etc.
Some pricing alternatives

Price discrimination?
Usage dependent?
Terms and conditions
- fixed, leasing, per-use, subscription
- warrantee, service level agreements

Bundles
- maintenance, support, releases, provisioning and operations

Who pays?
- sometimes not the end user

Slide adapted from slides for *Understanding Networked Applications*
By David G Messerschmitt. Copyright 2000. See copyright notice
Infrastructure acquisition

- Build and operate
- Build but do not operate
- Do not build but operate
- Neither

Trend

Outsourced operations
System integrator
Service provider

Slide adapted from slides for *Understanding Networked Applications*
By David G Messerschmitt. Copyright 2000. See copyright notice.
Application acquisition

Application

- Develop internally
- Buy as product
- Contract development
- Product w/ customization

Trend

- Software supplier
- Outsource developer
- Supplier, consultants
Stovepipe vs. Integrated Infrastructure

stovepipe architecture
---or---

Turnkey Solution
- Single supplier provides all encompassing solution
- (complete with infrastructure)

Integrated Infrastructure
- Separate infrastructure that can support many applications
From stovepipe to layering

Many applications
Integrated Infrastructure
(Maybe broken into Additional layers.)

Application-dependent infrastructure

Data
Voice
Video

Application-independent
Stovepipe vs. Integrated Infrastructure

- What are some examples of each?

- What are the advantages of each approach?
Vertical Integration vs. Diversification

- A company is \textit{vertically integrated} when it makes rather than buys the subsystems in its products.

- A \textit{diversified} company produces products across different industry segments.

Slide adapted from slides for \textit{Understanding Networked Applications} by David G Messerschmitt. Copyright 2000. See copyright notice.
Vertical Integration vs. Diversification

Why do customers favor less vertical integration?

- Prefer competition amongst component suppliers
- Mix and match components
- Reduced lock in

Disadvantages??

- Customer needs to integrate components from different suppliers.
Why do customers favor diversification?
- Reduce coordination costs by having to deal with fewer suppliers.
General Trend

- Less Vertical Integration
- More Diversification

- Of course there are exceptions...
Today’s supplier structure

Applications
Frameworks and components
Middleware
Infrastructure (network, OS) software
Equipment (network, computers)
Semiconductors, components

Slide adapted from slides for Understanding Networked Applications
By David G Messerschmitt. Copyright 2000. See copyright notice
Role of Venture Capital in Computing.

- Open interfaces allow small firms to contribute components without having to develop entire solution

- Fast decision making and no supplier lock-in.

- Other Advantages?
Purpose of a standard?

- Allow products or services from different suppliers or providers to be interoperable
Scope of a standard

Included:
- interfaces (physical, electrical, information)
- architecture (reference model)
- formats and protocols (FAP)
- compliance tests (or process)

Excluded:
- implementation
- (possibly) extensions
Reference model

Decide decomposition of system
- where interfaces fall
Defines the boundaries of competition and ultimately industrial organization
- competition on the same side of an interface
- complementary suppliers on different sides
- hierarchical decomposition at the option of suppliers
- (possibly) optional extensions at option of suppliers
Some issues

Once a standard is set
- becomes possible source of industry lock-in; overcoming that standard requires a major (~10x?) advance
- may lock out some innovation

In recognition, some standards evolve
- IETF, CCITT (modems), MPEG
- backward compatibility
Types of standards

de jure
- Sanctioned and actively promoted by some organization with jurisdiction, or by government

de facto
- Dominant solution arising out of the market
- Voluntary industry standards body

Industry consortium

Common or best practice

Examples?

Slide adapted from slides for *Understanding Networked Applications* by David G Messerschmitt. Copyright 2000. See copyright notice.
Examples

de jure
- GSM, ISDN Telephone interface

de facto
- Hayes command set, Windows API, Pentium instruction set, Ethernet

Voluntary industry standards body
- OMG/CORBA, IAB/IETF, IEEE

Industry consortium
- W3C/XML, SET

Best practice
- Windowed GUI

Slide adapted from slides for *Understanding Networked Applications*
By David G Messerschmitt. Copyright 2000. See copyright notice
The changing process

- As technology and industry move more quickly, the global consensus standards activity has proven too unwieldy
 - e.g. ISO
- “New age” standards activities are more informal, less consensus driven, a little less political, more strategic, smaller groups
 - e.g. OMG, IETF, ATM Forum, WAP

Programmable/extensible approaches for flexibility
- e.g. XML, Java

Slide adapted from slides for *Understanding Networked Applications*
By David G Messerschmitt. Copyright 2000. See copyright notice
Old giving way to the new

Slide adapted from slides for *Understanding Networked Applications* By David G Messerschmitt. Copyright 2000. See copyright notice
Reasons for change

- From government sanction/ownership to market forces
 - Increasing fragmentation
 - Importance of time to market

Greater complexity

- Less physical/performance constraint for either hardware or software
Lock-in

(Particularly open) standards reduce consumer lock-in

- Consumers can mix and match complementary products

Increase supplier lock-in

- Innovation limited by backward compatibility
- e.g. IP/TCP, x86, Hayes command set

Slide adapted from slides for Understanding Networked Applications
By David G Messerschmitt. Copyright 2000. See copyright notice
Network effects

Standards can harness network effects to the industry advantage

- Revenue = (market size) x (market share)

Increases value to customer

Increases competition

- Only within confines of the standard
- But forces customer integration or services of a system integrator
Why standards?

de jure are customer driven to reduce confusion and cost

de facto standards are sometimes the result of positive feedback in network effects

Customers and suppliers like them because they

- increase value
- reduce lockin

Governments like them because they

- promote competition in some circumstances
- May believe they can be used to national advantage

*Slide adapted from slides for *Understanding Networked Applications*
By David G Messerschmitt. Copyright 2000. See copyright notice*
Approaches

Consensus
- ISO

Collaborative design
- MPEG

Competitive “bake off”
- IETF

Coordination of vendors
- OMG

Slide adapted from slides for *Understanding Networked Applications* by David G Messerschmitt. Copyright 2000. See copyright notice.
Open Standards

- Open standard – a standard that is well documented, unencumbered by intellectual property rights and restrictions, and available to any vendor.

- What are the advantages?

- What are the disadvantages?
Why companies participate

Pool expertise in collaborative design
- e.g. MPEG

Have influence on the standard

Get technology into the standard
- Proprietary, with expectation of royalties
- Non-proprietary

Reduced time to market
Standards applied to Business Processes?

- Can you standardize business processes?

- Yes!:
 - ISO 9000
 - A set of standardized business processes for Quality Management.
 - Supports TQM (Total Quality Management)
 - RosettaNet
 - A set of standardized business processes, and accompanying standardized data interfaces/formats for conducting e-business.
Midterm Results

- High: 97
- Low: 36