Image Formation,
Sampling, and Resolution

Perspective for the Day
Let's design a camera

- Idea 1: a piece of film in front of an object
- Do we get a reasonable image?

Pinhole camera

- Add a barrier to block off most of the rays
 - This reduces blurring
 - The opening is known as the **aperture**
Pinhole camera model

- Pinhole model:
 - Captures **pencil of rays** – all rays through a single point
 - The point is called **Center of Projection** (focal point)
 - The image is formed on the **Image Plane**

Building a real camera
Camera Obscura

- Basic principle known to Mozi (470-390 BCE), Aristotle (384-322 BCE)
- Drawing aid for artists: described by Leonardo da Vinci (1452-1519)

Source: A. Efros

Home-made pinhole camera

Why so blurry?

http://www.debevec.org/Pinhole/

Slide by A. Efros
Shrinking the aperture

- Why not make the aperture as small as possible?
 - Less light gets through
 - Diffraction effects…
Adding a lens

- A lens focuses light onto the film
 - Rays passing through the center are not deviated

A lens focuses light onto the film
- Rays passing through the center are not deviated
- All parallel rays converge to one point on a plane located at the focal length f
Adding a lens

- A lens focuses light onto the film
 - There is a specific distance at which objects are “in focus”
 - Other points project to a “circle of confusion” in the image

Depth of Field

http://www.cambridgeincolour.com/tutorials/depth-of-field.htm
How can we control the depth of field?

- Changing the aperture size affects depth of field
 - A smaller aperture increases the range in which the object is approximately in focus
 - But small aperture reduces amount of light – need to increase exposure
Nice Depth of Field effect

Field of View / Focal Length

Sources: A. Efros, F. Durand
Sensor: An array of energy detecting devices

Example: CCD in a digital camera
Image Acquisition

FIGURE 2.15 An example of the digital image acquisition process. (a) Energy (“illumination”) source. (b) An element of a scene. (c) Imaging system. (d) Projection of the scene onto the image plane. (e) Digitized image.

Image Sampling and Quantization

FIGURE 2.17 (a) Continuous image projected onto a sensor array. (b) Result of image sampling and quantization.
Image Sampling, Quantization and Noise

CCD vs. CMOS

- **CCD**: transports the charge across the chip and reads it at one corner of the array. An analog-to-digital converter (ADC) then turns each pixel's value into a digital value by measuring the amount of charge at each photosite and converting that measurement to binary form.

- **CMOS**: uses several transistors at each pixel to amplify and move the charge using more traditional wires. The CMOS signal is digital, so it needs no ADC.

Color sensing in camera: Color filter array

Bayer grid

Estimate missing components from neighboring values (demosaicing)

Why more green?

Human Luminance Sensitivity Function

Source: Steve Seitz

Demosaicing
Color sensing in camera: Prism

- Requires three chips and precise alignment
- More expensive

![Prism Diagram]

Color sensing in camera: Foveon X3

- CMOS sensor
- Takes advantage of the fact that red, blue and green light penetrate silicon to different depths

Source: M. Pollefeys

http://en.wikipedia.org/wiki/Foveon_X3_sensor

better image quality
Digital camera artifacts

- Noise
 - low light is where you most notice noise
 - light sensitivity (ISO) / noise tradeoff
 - stuck pixels

- In-camera processing
 - oversharpening can produce halos

- Compression
 - JPEG artifacts, blocking

- Blooming
 - charge overflowing into neighboring pixels

- Color artifacts
 - purple fringing from microlenses,
 - white balance

What Is An Image?

- Definition: An image is a 2-dimensional light intensity function, \(f(x,y) \), where \(x \) and \(y \) are spatial coordinates, and \(f \) at \((x,y) \) is related to the brightness of the image at that point.

- Definition: A digital image is the representation of a continuous image \(f(x,y) \) by a 2-D array of discrete samples.

- The amplitude of each sample is quantized to be represented by a finite number of bits.

- Definition: Each element of the 2-d array of samples is called a pixel (Picture Element)
• An MxN digital grayscale image: (for color \(f(x,y) \) would be 1 color component)

\[
f(x,y) = \begin{bmatrix}
f(0,0) & \cdots & f(0,N-1) \\
\vdots & \ddots & \vdots \\
f(M-1,0) & \cdots & f(M-1,N-1)
\end{bmatrix}
\]

• Book Convention: (Same as MATLAB, except MATLAB starts index at 1)

\[
f(x,y) = \begin{bmatrix}
y \text{(columns)} \\
x \text{(rows)}
\end{bmatrix}
\]

IMAGE SENSING AND ACQUISITION

Two important components:

• *Illumination*

• *Sensing*

Illumination can be:

• *From the object* being imaged (e.g. Sun, radioactive decay, sound source, …)

• Independent source, but **reflected** by objects (e.g. most optical imaging, radar, sonar, ultrasound)

• Independent source, **transmitted** through objects (e.g. X-ray, geophysical borehole imaging)
Simple Model of (Gray) Image Formation
(Reflectance Model)

- Image \(0 < f(x,y) < \text{Inf}\), as a physical quantity related to measured energy

- Can distinguish two components:
 - **Illumination** incident on the object: \(0 < i(x,y) < \text{Inf}\)
 - **Reflectance** function of the object: \(0 < r(x,y) < 1\)
 - \(r = 0\) means total absorption, \(r = 1\) total reflection.

\[f(x,y) = i(x,y) r(x,y)\]

In other cases, \(r(x,y)\) may be replaced by the “transmissivity.”

The Grayscale and Its Perception

- We call the intensity \(L = f(x,y)\) the “gray level” value

- The range of values of \(L_{\text{min}} < L < L_{\text{max}}\) is called the grayscale.

- Commonly, we use the range \([0, L-1]\) for integer \(L\) that is a power of 2.

Example: 3 bits, \(2^3 = 8\) gray levels
Number of Gray Levels and Contouring

Perception of Graylevel Contouring

Easy to see contouring in a ramp: 32, 64, 128, 256 (Typical)
Storage Needs for Images:

- Image MxN pixels, 2^B gray levels, c color components
 - Size = $M \times N \times B \times c$
 - Example: MxN=1024x1280, B=8, c=3 (24 bit RGB image)
- Size = 31,457,280 bits (or 3.75 MBytes)

- Need to have (lossy) compression!

RESOLUTION

- Spatial Resolution:
 - Smallest discernable detail in an image.
 - Determined by spatial sampling.
 - Hard to measure objectively.
- Grayscale resolution:
 - Smallest discernable change in gray level
 - Even harder to measure.
Luminance change and its visibility

Weber’s Law: $\frac{\Delta I}{I} \approx 2\%$

Count the Black Dots (If you can)
Diffraction-Limited Imaging

\[r = \frac{1.22 \lambda R}{D} = \frac{0.61 \lambda}{NA} = 1.22 \lambda F \]

\(r \) is the radius of the smallest resolvable feature in the image plane.

Alien-free Image Sampling

- To obtain an alias-free, diffraction limited image we need 4 pixels covering the Airy disk:

That is: radius of the Airy disk must match the pixel dimensions.
Film, CCD’s, and the Eye

Image acquisition — photographic emulsion
Photographic emulsions are generally made with photosensitive crystals of AgBr with grain size in the range 0.04-1.5 μm.

Image acquisition — retina
The human retina contains photoreceptors (rods and cones) whose dimensions and spacings are of the order of 10 μm.

Film, CCD’s, and the Eye

Image acquisition — CCD camera
CCD (charge coupled devices) chips are the basis of digital cameras and displays. CCD chips are fabricated with VLSI technology. The phototransistor is a solid-state, back-illuminated diode whose current is sensitive to light intensity.

Photomicrograph of a CCD camera surface showing portions of 16 unit cells each with dimensions 13 x 13 μm. Each unit cell corresponds to a pixel. The chip has 690 x 582 pixels in an area of 16 x 9.5 mm.

→ Looking at bright blue light:

\[
\frac{1.22\lambda R}{D} = \frac{1.22(0.5\mu m)(2cm)}{2mm} = 6\mu m
\]

The image of a thin line is not a thin line

<table>
<thead>
<tr>
<th>Image of a thin line</th>
<th>Pixel array</th>
<th>Film grains</th>
</tr>
</thead>
</table>

Notes by G+W

Peyman Milanfar
UCSC EE Dept.
Number of Pixels and Resolution

FIGURE 2.19 A 1024×1024 8-bit image subsampled down to size 32×32 pixels. The number of allowed gray levels was kept at 256.

Number of Pixels ≠ Resolution

FIGURE 2.20 (a) 1024×1024 8-bit image. (b) 512×512 image resampled into 1024×1024 pixels by row and column duplication. (c) through (f) 256×256, 128×128, 64×64, and 32×32 images resampled into 1024×1024 pixels.
Number of Pixels \neq Resolution

Read article “Myth of Megapixels” by David Pogue, available on course webpage.

FIGURE 2.25 Top row: images zoomed from 128×128, 64×64, and 32×32 pixels to 1024×1024 pixels, using nearest neighbor gray-level interpolation. Bottom row: same sequence, but using bilinear interpolation.