EE 171

Integrated Circuit Design
(Current Sources)

University of California, Santa Cruz
May 10, 2007
Agenda / Outline

• A discrete, multi-stage amplifier
 – (p. 343-348)

• Discrete versus IC design (Section 7.1)

• IC biasing using current sources
 – BJT implementations (Section 7.2)
 – MOS implementations (Section 7.3)
A Discrete Multi-Stage Amplifier

- Specs: p. 343
- Use emitter followers for high input and low output impedance
- Cascade two common-emitter amplifiers to get the desired gain
- Input impedance of each stage is important
 - Z_{in} of emitter follower (last stage) = Load of emitter follower (3rd stage)
 - Will be used to determine the emitter resistances of the common-emitter stages

![Amplifier block diagram](image)
Circuit Implementation

Emitter Follower (1st stage)
- Need resistances above 1 MΩ to meet input impedance requirements
- Choose R_3 so that base current is lower than current through R_1 and R_2

Emitter Follower (last stage)
- Bias point chosen to avoid clipping
 - V_{CE} (Q4): sufficient voltage swing
 - I_C (Q4): sufficient current through R_L
Reduction of Discrete Elements

- Several coupling capacitors and resistors can be eliminated
 - DC operating point at the output can be used as the input of the next stage
 - Still need coupling between 2nd and 3rd stage (want $V_{CE} = 5$ v and in the middle of the 15 v supply)
Final Implementation

- Resistors chosen so that collector currents go from \(\mu A \) to mA
 - Gradual change from high impedance to low impedance
- Capacitors: impedance should be low at high end of frequency range
 - Impedance should also be smaller than other nearby resistances at the low end of the frequency range (to avoid roll-off in gain)
What differs in IC biasing?

• Why integrated circuits?
 – Better density
 – Better matching from one device to the next

• In discrete applications, use resistors and capacitors for biasing
 – Very large range of values

• However in IC applications, it is expensive to use these devices
 – Occupies a lot of chip area
 – 1 µF capacitor: 12,000 µm x 12,000 µm
 – 100 kΩ resistor: W = minimum rule, L = 400x longer

• For this reason, replace resistors with transistor where possible
 – Stages will also need to be directly coupled
IC Circuits: BJT or MOS?

- Circuit implementations shown can be done with BJTs or MOS transistors
 - Which is better?

- Using BJTs
 - Advantages
 - Higher current drive
 - Better switching characteristics
 - Able to support high power designs
 - Disadvantages
 - Always leaks
 - Not scalable ($V_{BE} = 0.7 \text{ v}$)

- Using MOS transistors
 - Smaller area (used for high density circuits)
 - Scalable
 - Easier to make (less process complexity vs. BJTs)
 - 0 static power dissipation (input is an insulator)
Current Mirror

• Bias both Q₁ and Q₂ into active mode
 – By symmetry, $V_{BE1} = V_{BE2} = 0.7 \text{ v}$, and $I_{C1} = I_{C2}$

• KCL: $I_{\text{ref}} = I_{C1} + I_{B1} + I_{B2} \approx I_{C1}$ (low base currents)

• Junction areas can be scaled without affecting symmetry
 – Allows for $I_{C2} = a$ multiple of I_{ref}

$$I_{\text{ref}} = \frac{V_{CC} - V_{BE1}}{R}$$

Output resistance

(Operate current mirror in this area)

IV looks like a single BJT curve
Application: Biasing an Emitter Follower

- Eliminates two resistors
- Note that input and output are directly coupled
 - Output will have a DC offset of $-0.7\,\text{v}$ (V_{BE} of Q_3)
 - Can eliminate this by cascading with a PNP follower
Widlar Current Source

- I_{C1} semi-arbitrary (used to choose R_1)
- Choose R_2 based on requirements of I_{C2} (current source)
 - KVL: $V_{BE1} - V_{BE2} - R_2 I_{C2} = 0$
- Can be used to design current sources with lower resistances
 - See Example 7.3

\[
I_E = I_B + I_C = I_{ES} \left(e^{\frac{V_{BE}}{V_T}} - 1 \right)
\]

\[
I_C \approx I_{ES} e^{\frac{V_{BE}}{V_T}}
\]

\[
V_{BE} = V_T \ln \frac{I_C}{I_{ES}}
\]

\[
I_{C1} \approx \frac{V_{CC} - V_{BE1}}{R_1}
\]

\[
R_2 \approx \frac{V_T}{I_{C2}} \ln \frac{I_{C1}}{I_{C2}}
\]
Multiple Current Sources

• In a typical IC biasing, the same reference current can be used for several current sources
 – See Exercise 7.3

• Current source
 – NPN circuit
 – Removes current from the circuit

• Current sink
 – PNP circuit
 – Delivers current to the circuit

\[I_{\text{ref}} = \frac{(15 - 0.7) - (-15 + 0.7)}{R_1} \]
Biasing with FETs (Current Mirror)

- The same biasing configurations can be applied to MOS transistors
- M_1 is in saturation
 - $V_{DS1} = V_{GS1}$
 - Saturation: $V_{DS} > V_{GS} - V_T$
 - By symmetry, $I_o = I_1$
 - Independent of V_o (as long as M_2 is biased into saturation)
- For a different I_o value, the W/L ratios of the transistors can be changed

\[
I_o = \frac{W_2}{L_2} \frac{W_1}{L_1} I_1
\]

\[
R_{out} = r_d
\]
NMOS Wilson current source

- Higher output resistance
 - Proof: draw the small signal AC circuit and find Z_{out}

\[I_1 = \frac{V_{DD} - 2V_{t_0}}{R} \]