Please make sure to include section number, not the day and time, on the cover page.

The self-graded report is due at 7 PM Wednesday, Mar. 16th. Put yours (with the optional revision) in the black basket in BE 150.

All your old stuffs will be in your section envelope in the black basket. Pick them up by Wednesday. If I see anything left behind after 7 PM Wed., your lab grade will be lowered by one letter grade.

I will write all the scores you earned so far in EE 101L on the pre-lab #5, which you can find in the envelope in the basket. Let me know if there is any mistake by Friday, Mar. 18th for the record correction.

There are 27 items in the list. Make a mark your lab report with the item number where you have it in your report. Each item is 1 point. Add them up and write it on the cover page next to your name.

Introduction
1. Description and analysis of the low pass filter.
2. Description and analysis of the high pass filter
3. Description and analysis of the summing circuit.

Part 1
4. The circuit diagram of the circuit 1 (including the measurement of the resistor).
5. Measurement of the amplitude of the circuit output for input frequency from 50 Hz to 20 kHz.
6. Measurement of the phase of the circuit output for input frequency from 50 Hz to 20 kHz.
7. Derivation of the transfer function of the circuit 1 (for theoretical value of amplitude and phase).
8. Bode magnitude plot of the circuit 1 (for both experimental and theoretical values).
9. Bode phase plot of the circuit 1 (for both experimental and theoretical values).
11. Derivation of experimental cut-off frequency of the circuit 1 and comparison with #11.
12. The classification of the circuit 1.
13. The circuit diagram of the circuit 2 (including the measurement of the resistor).
14. Measurement of the amplitude of the circuit output for input frequency from 50 Hz to 20 kHz.
15. Measurement of the phase of the circuit output for input frequency from 50 Hz to 20 kHz.
16. Derivation of the transfer function of the circuit 2 (for theoretical value of amplitude and phase).
17. Bode magnitude plot of the circuit 2 (for both experimental and theoretical values).
18. Bode phase plot of the circuit 2 (for both experimental and theoretical values).
20. Derivation of experimental cut-off frequency of the circuit 2 and comparison with #19.
21. The classification of the circuit 2.

Part 2
22. The description of the project requirement specification.
23. The description of your design, including the circuit diagram.
24. The analysis of how your design meets the project requirement, including calculation of part values.
25. The description of the circuit performance, including the Bode plot of the circuit.

Conclusion
26. The summary of the topics you learned in this lab demonstrated with the result of your lab activity.
27. Your personal appreciation of the lab. (What you like/hate, the difficulties/inspirations while you working on the lab. Any suggestion on how to improve the future lab #5)

For this lab, Armando’s check off of the project will replace the style points.