Midterm 1 Review

Current is flow of electric charge/sec \[i(t) = \frac{dq(t)}{dt} \] \[\text{Amps} = \text{Coulombs/sec} \]

Voltage is energy/unit-of-charge \[v \]

Power : \[p = v \cdot i \] \[> 0 : \text{energy is absorbed} \]
\[< 0 : \text{energy is supplied} \] \[\text{Watts} = \text{J/s} \]

Energy : \[W = \int_{t_1}^{t_2} p(t) \, dt \] \[\text{Joules} \]

\[V = I \cdot R \]
\[R = \frac{PL}{A} \] \[\text{Resistance is proportional to resistivity} \]
\[G = \frac{1}{R} \] \[\text{`Conductance`} \]
\[I = GV \]

Equivalent Resistances:

Series Resistors:
\[R_{eq} = R_1 + R_2 + \cdots + R_n \]

Parallel:
\[R_{eq} = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \cdots + \frac{1}{R_n}} \]

Voltage Divider (series)
\[V_1 \frac{R_1}{R_1 + R_2 + R_3} \]
\[V_2 \]
\[V_n = \frac{R_n}{R_1 + R_2 + \cdots + R_n} \cdot V_s \]

Current Divider (parallel)
\[I_1 \frac{R_1}{R_1 + R_2} \]
\[I_2 \]
\[I_2 = \frac{R_1}{R_1 + R_2} \cdot I_s \]

Node-Voltage Analysis (KCL)
- supernodes around Voltage Sources
- dependent sources

Mesh-Current Analysis (KVL)
- supermesh around Current Sources
- dependent sources
Thevenin Equivalent Circuit

\[V_T \quad (+) \quad U_{oc} = V_T \]

\[I_N = \frac{V_T}{R_T} \]

The two are interchangeable (Source Transformations)

- **Thevenin**
- **Norton**

a) Find \(U_{oc} \)
b) Find \(I_{sc} \)
c) Find \(R_T \)

- **Dependent sources require additional eqn**
 - if no independent sources, you must excite ckpt with a 1V (or 1A) test voltage (or current). \(R_T = \frac{V_{test}}{I_{test}} \)

Zeroing of independent sources

- Voltage-source becomes short ckpt (\(\sigma \) volts)
- Current-source becomes open ckpt (\(\sigma \) amps)

Source Transformations

\[V_T \quad (+) \quad U_{oc} \]

\[I_N = \frac{V_T}{R_T} \]

Max Power Transfer

- occurs when \(R_L = R_T \) \(P_{l_{max}} = \frac{V_T^2}{4R_T} \)

= load resistance that absorbs maximum power

Superposition Principle

The net response in a linear circuit is equal to the sum of the responses from each independent source acting alone (with all other independent sources zeroed),