• Use PHASORS to represent sinusoids (of a given frequency)
 Polar Form $A + jB$
 Rect Form M/θ
 Graphical Interpretation:

• Sinusoidal Steady-State Analysis
 Time Domain
 $u(t) = V_m \cos(\omega t + \theta)$
 $u = iR$
 Complex Impedances:
 $Z_R = R$
 $Z_L = j\omega L$
 $Z_C = \frac{1}{j\omega C} = -\frac{j}{\omega C}$

• ELI the ICE man
 Voltage leads Current in an Inductor (L)
 Current leads Voltage in a Capacitor (C)

• RMS of $V_m \cos(\omega t + \theta) = \frac{V_m}{\sqrt{2}}$

• All standard circuit analysis techniques can be used in the Phasor domain:
 Node-Voltage Analysis
 Mesh-Current Analysis
 Thevenin/Norton
 Source Transformations
 Superposition
 $V = IZ$
 KCL
 KVL
 Voltage Divider Rule
 Current Divider Rule
• S.S.S. Power Calculations

Power Factor: \(PF = \cos(\Theta) \quad \Theta = \Theta_v - \Theta_i \)

Average Power: \(P = \frac{V_{\text{rms}}I_{\text{rms}} \cos(\Theta)}{2} \quad [\text{W}] \)

Reactive Power: \(Q = \frac{V_{\text{rms}}I_{\text{rms}} \sin(\Theta)}{2} \quad [\text{VAR}] \)

"Lagging" Power Factor \(\Rightarrow \) current lags voltage \(\Rightarrow \) INDUCTIVE load

"Leading" Power Factor \(\Rightarrow \) current leads voltage \(\Rightarrow \) CAPACITIVE load

Apparent Power: \(V_{\text{rms}}I_{\text{rms}} \quad [\text{VA}] \)
\[= \sqrt{P^2 + Q^2} \]

Power Triangles

\[\begin{align*}
& \text{Inductive Load} \quad (Q > 0) \\
& \text{Capacitive Load} \quad (Q < 0) \\
& \text{Purely Resistive Load} \quad (\Theta = Q = 0)
\end{align*} \]

\[P = |I_{\text{rms}}|^2R \quad \text{or} \quad \frac{|V_{\text{rms}}|^2}{R} \]

\[Q = |I_{\text{rms}}|^2X \quad \text{or} \quad \frac{|V_{\text{rms}}|^2}{X} \]

\[I_{\text{rms}} \text{ is current passing through } R \text{ or } X \]

\[V_{\text{rms}} \text{ is voltage present on } R \text{ or } X \]

• Maximum Power Transfer ("Impedance Matching")

Load should equal complex conjugate of Thevenin impedance seen by load

\(Z_L = Z_{TH}^* \)

or if load is purely resistive

\(Z_L = R_L = \frac{|Z_{TH}|}{\sqrt{R_{TH}^2 + X_{TH}^2}} \)
- Ideal Transformer
 - The side with fewer windings is the "secondary" side
 - POWER IS CONSTANT \(V_1 I_1 = V_2 I_2 \)
 \[
 V_2 = \frac{N_2}{N_1} V_1 \quad \text{or} \quad V_2 = -\frac{N_2}{N_1} V_1 \\
 I_2 = \frac{N_1}{N_2} I_1 \quad \text{or} \quad I_2 = -\frac{N_1}{N_2} I_1
 \]

 Rules for determining polarities:
 1. If the coil voltages \(V_1 \) and \(V_2 \) are both positive (or negative) at the dot-marked terminal, use '+'
 2. If the coil currents \(I_1 \) and \(I_2 \) are both directed into (or out of) the dot-marked terminal, use '-'

- Impedance Transformations
 \[
 Z_L' = \left(\frac{N_1}{N_2} \right)^2 Z_L
 \]
 impedance seen by source side of transformer

- Intro to Filters
 Transfer Function: \(H(f) = \frac{V_{\text{out}}(f)}{V_{\text{in}}(f)} \)
 Math definitions:
 \[
 |H(f)| = \sqrt{H(f) \cdot H(f)^*} \quad \angle H(f) = \arctan\left(\frac{\text{Im}\{H(f)\}}{\text{Re}\{H(f)\}}\right)
 \]
 Decibels: \(|H(f)|_{\text{dB}} = 20 \log_{10} |H(f)| \)
 "Decade" ⇒ factor of 10
 "Octave" ⇒ factor of 2
 e.g.: 10Hz → 1000Hz
 e.g.: 10Hz → 80Hz
 "2 Decades"
- **First-Order LPF**

 Example:

 \[
 V_{IN} \quad R \quad V_{OUT}
 \]

 \[\text{Example } H(f): \quad \frac{1}{1+j2\pi f \tau RC}\]

 \[\text{General Form } H(f): \quad \frac{1}{1+j\left(\frac{f}{f_B}\right)}\]

 \[f_B = \frac{1}{2\pi \tau RC} \quad \text{or} \quad \tau = \frac{1}{RC}\]

- **First-Order HPF**

 \[\text{Example } H(f): \quad \frac{j2\pi f \tau RC}{1+j2\pi f \tau RC}\]

 \[\text{General Form } H(f): \quad \frac{j\left(\frac{f}{f_B}\right)}{1+j\left(\frac{f}{f_B}\right)}\]

 \[f_B = \frac{1}{2\pi \tau RC} \quad \text{or} \quad \tau = \frac{1}{RC}\]

 \[\tau = \frac{1}{RC}\]

- **Bode Plots**

 First-Order LPF

 \[|H(f)| \text{ vs. } f\]

 \[|\angle H(f)| \text{ vs. } f\]

 \[f_B = \text{Break Freq.; } \text{(} \text{or} \text{''Half-power'' Freq.}\text{)}\]

- **Bandpass Filters** (Resonant Circuits)

 Resonant Frequency

 \[\text{Freq. at which impedance is purely resistive}\]

 \[\text{i.e. total reactance is zero}\]

 \[f_0 = \frac{1}{2\pi \sqrt{LC}} \quad \text{same for series or parallel BPF circuits}\]

 Quality Factor

 \[Q = \text{measure of magnitude Response's ''Narrowness''}\]

 \[\text{(large } Q \Rightarrow \text{narrow passband)}\]

 \[\text{Bandwidth: } B = f_H - f_L = \frac{f_0}{Q}\]

 \[(\text{small } Q) \quad \text{vs. } (\text{large } Q)\]