Satisfying Error Conditions

Lecture 13
Review

• Verification condition
 \[\text{precondition} \implies \text{vc(body, postcondition)} \]
 - VC invalid \implies \text{error in program or spec}
 - VC valid \implies \text{program implements spec}

• Error condition
 - negation of VC
 - \text{EC satisfiable} \implies \text{error in program or spec}
 - \text{EC unsatisfiable} \implies \text{program implements spec}

• Satisfiability of ECs?
 - Davis-Putnam
Review: Where Are We?

Program

Specification

\{\}

Semantics

Error

Invalid

VC generation

Verification Condition

negate

Error Condition

satisfiable
Review: Our Specification Language

• Atoms
 - $A ::= E_1 \leq E_2 \mid E_1 = E_2 \mid f(A_1,\ldots,A_n) \mid \ldots$
 - All boolean expressions from our language are atoms
 - Can have an arbitrary collection of predicate symbols
 • reachable(E_1,E_2) - list cell E_2 is reachable from E_1

• Literals
 - $L ::= A \mid \neg A$

• Formulas
 - $P ::= L \mid true \mid false \mid P_1 \land P_2 \mid P_1 \lor P_2 \mid \neg P$
Strategy for deciding satisfiability of ECs

• Leverage SAT solver to reason about boolean structure

• Literals?
 - eg \(x < 3 \; x > y \; y > 4 \)
 - use separate routine “checkSatLits(...)” to reason about satisfiability of conjunctions of literals

• Get SAT solver and checkSatLits(...) to cooperate to decide satisfiability of EC formulas
Satisfiability of ECs: Example

- **EC**
 \[(a=b) \land (\neg(f(a)=f(b)) \lor b=c) \land \neg(f(a)=f(c))\]

- Use {...} as funny syntax for boolean variables

- **SAT problem**
 \[
 \begin{aligned}
 &\{a=b\} \land (\neg\{f(a)=f(b)\} \lor \{b=c\}) \land \neg\{f(a)=f(c)\} \\
 &v1 \land (\neg \ v2 \lor \ v3) \land \neg \ v4
 \end{aligned}
 \]

- **SAT solution**
 - True: \(\{a=b\} \)
 - False: \(\{f(a)=f(b)\} \ \{b=c\} \ \{f(a)=f(c)\} \)

- **Conjunction of literals**
 \[a=b \land f(a)\neq f(b) \land b\neq c \land f(a)\neq f(c)\]

- Is this conjunction of literals satisfiable?
Satisfiability of ECs: Example

• Conjunction of literals
 \[a=b \land f(a) \neq f(b) \land b \neq c \land f(a) \neq f(c) \]

• Is this conjunction of literals satisfiable?
 - simpler problem, no disjunctions, no case analysis
 - call routine checkSatLits(L_1, ..., L_k)
 - returns no!

• Semantics of equality says:
 - \(a=b \Rightarrow f(a)=f(b) \)
 - this tautology returned by checkSatLits(L_1, ..., L_k)
 - append tautology to original problem, and repeat!
Satisfiability of ECs: Example

• EC + tautology
 - \((a=b) \land (\neg f(a)=f(b)) \lor b=c \land \neg (f(a)=f(c)) \land (a=b \Rightarrow f(a)=f(b))\)

• SAT problem
 - \({a=b} \land (\neg \{f(a)=f(b)\} \lor \{b=c\}) \land \neg \{f(a)=f(c)\} \land (\{a=b\} \Rightarrow \{f(a)=f(b)\})\)

• SAT solution
 - True: \({a=b} \quad \{f(a)=f(b)\} \quad \{b=c\}
 - False: \{f(a)=f(c)\}

• Conjunction of literals
 - \(a=b \land f(a)=f(b) \land b=c \land f(a) \neq f(c)\)

• Is this conjunction of literals satisfiable?
Satisfiability of ECs: Example

• Conjunction of literals
 - $a = b \land f(a) = f(b) \land b = c \land f(a) \neq f(c)$

• Is this conjunction of literals satisfiable?
 - call routine checkSatLits($L_1, ..., L_k$)
 - returns no!

• Semantics of equality says:
 - $a = b \land b = c \Rightarrow f(a) = f(c)$
 - this tautology returned by checkSatLits($L_1, ..., L_k$)
 - append tautology to original problem, and repeat!
Satisfiability of ECs: Example

• EC + tautologies
 - \((a=b) \land (\neg (f(a)=f(b)) \lor b=c) \land \neg (f(a)=f(c))\)
 - \((a=b \Rightarrow f(a)=f(b))\)
 - \((a=b \land b=c \Rightarrow f(a)=f(c))\)

• SAT problem
 - \(\{a=b\} \land (\neg \{f(a)=f(b)\} \lor \{b=c\}) \land \neg \{f(a)=f(c)\}\)
 - \(\{a=b\} \Rightarrow \{f(a)=f(b)\}\)
 - \(\{a=b\} \land \{b=c\} \Rightarrow \{f(a)=f(c)\}\)

• Unsatisfiable
 - therefore original EC unsatisfiable
 - we’re done!
 - leverages SAT solver and checkSatLits\((L_1, ..., L_k)\)
Review: Where Are We?

Program \{ Specification \} \rightarrow Semantics \rightarrow Error

- Invalid
- VC generation

Verification Condition

Error Condition

check satisfiability using Davis-Putnam and checkSatLits(…)

negate
Implementing checkSatLits(L_1, \ldots, L_k)

- A **theory** consists of:
 - A set of function and predicate symbols (syntax)
 - Definitions for the meaning of these symbols (semantics)
 - Semantic or axiomatic definitions

- Example:
 - Symbols: $0, 1, -1, 2, -2, \ldots, +, -, =, <$ (with the usual meaning)
 - Theory of integers with arithmetic (Presburger arithmetic)
 - Satisfiable? $y > 2x + 1 \land y + x > 1 \land y < 0$

- The **Satisfiability Problem**: Decide whether a conjunction of literals in the theory is satisfiable
Examples of Theories. Equality.

• The theory of equality with uninterpreted functions
• Symbols: =, ≠, f, g, ...
• Axiomatically defined:

\[
\begin{align*}
E &= E \\
E_1 &= E_2 \\
E_1 &= E_2 & E_2 &= E_3 \\
E_1 &= E_3 \\
f(E_1) &= f(E_2)
\end{align*}
\]

• Example of a satisfiability problem:

\[
g(g(g(x))) = x \land g(g(g(g(g(x)))))) = x \land g(x) \neq x
\]
A Satisfiability Procedure for Equality

• Let R be a relation on terms

• The \textbf{equivalence closure} of R is the smallest relation closed under reflexivity, symmetry and transitivity
 - an \textit{equivalence relation}
 - divides terms into \textit{equivalence classes}

• \textbf{Computing the equivalence closure}
 - each equivalence class has a \textit{representative element}
 - given a term t we say that t^* is its \textit{representative element}
 - two terms t_1 and t_2 are equivalent iff $t_1^* = t_2^*$
 - computable in near-linear time (union-find)
A Satisfiability Procedure for Equality (Cont)

• Let R be a relation on terms

• The **congruence closure** of R is the smallest relation that is closed under equivalence (reflexivity, symmetry and transitivity) and congruence
 - also an *equivalence relation*
 - divides term in *equivalence classes*

• Computing the congruence closure
A Representation for Symbolic Terms

- We represent terms as DAGs
 - Share common subexpressions
 - E.g. $f(f(a, b), b)$:

- Equalities are represented as dotted edges
 - E.g. $f(f(a, b), b) = a$
 - We consider the transitive closure of dotted edges
Computing Congruence Closure

- We pick arbitrary representatives for all equivalence classes (nodes connected by dotted edges)

- For all nodes \(t = f(t_1, ..., t_n) \) and \(s = f(s_1, ..., s_n) \)
 - If \(t_i^* = s_i^* \) for all \(i = 1..n \) (find)
 - We add an edge between \(t^* \) and \(s^* \) and pick one of them as the representative for the entire class (union)
Computing Congruence Closure (Cont.)

• Congruence closure is an inference procedure for the theory of equality
 - Always terminates because it does not add nodes

• The hard part is to detect the congruent pairs or terms
 - There are tricks to do this in $O(n \log n)$

• We say that $f(t_1, ..., t_n)$ is represented in the DAG if there is a node $f(s_1, ..., s_n)$ such that $s_i^* = t_i^*$
Satisfiability Procedure for Equality

1. Given \(F = \bigwedge_i t_i = t_i' \land \bigwedge_j u_j \neq u_j' \)
2. Represent all terms in the same DAG
3. Add dotted edges for \(t_i = t_i' \)
4. Construct the congruence closure of those edges
5. Check that for all \(j \) we have \(u_j^* \neq u_j'^* \)

Theorem:

\(F \) is satisfiable if and only if for all \(j \) \(u_j^* \neq u_j'^* \)
Example with Congruence Closure

- Consider: $g(g(g(x))) = x \land g(g(g(g(g(x)))))) = x \land g(x) \neq x$