Simply-Typed Lambda Calculus

Types and Programming Languages, Spring 2005, SoE UCSC

PRESENTER Jessica Gronski
SCRIBE Avik Chaudhuri

April 5, 2005

1 Why types?
Recall that the untyped lambda calculus has the following syntax and semantics.

Terms $e ::= x$ (variable) |
| $\lambda x.e$ (abstraction) |
| $e \ e$ (application)

Values $v ::= \lambda x.e$

Reduction

\[
\begin{align*}
&\text{(APP-L)} \quad e_1 \rightarrow e'_1 \quad (\text{APP-R}) \quad e_2 \rightarrow e'_2 \\
&\quad e_1 \ e_2 \rightarrow e'_1 \ e_2 \\
&\quad v_1 \ e_2 \rightarrow v_1 \ e'_2 \\
&\quad (\beta) \quad \lambda x.e_1 \ v_2 \rightarrow e_1[x \mapsto v_2]
\end{align*}
\]

A normal form is any term that cannot be reduced. We agreed that one of the goals of typing would be to eliminate the possibility of normal forms that are not values. Such a property would be eventually named progress.
A second goal would be to guarantee termination by eliminating terms like $\lambda x.(x \ x) \ \lambda x.(x \ x)$.

2 Notions of safety
We discussed a couple of definitions.

1. $\forall e. \ \exists e'. \ e \rightarrow^* e'$ such that e' is a value in normal form.
 This means that there must exist some evaluation path that terminates in a value. If there are several possible evaluation paths, some paths may not terminate, or may terminate in terms that are not values. This did not seem quite appropriate for our goals.

2. $\forall e. \ \forall e'. \ (e \rightarrow^* e' \text{ and } e' \text{ is in normal form}) \text{ implies } e' \text{ is a value.}$
 Observe that this does not require that all evaluation paths terminate; it does require that if an evaluation terminates, it does so at a value.
We adopted (2) as our definition of safety.

3 Simply-typing an applied λ calculus

We wrote down a simply-typed applied calculus with booleans and conditional branches.

Simple types T ::= $T \to T$ (function type)
| B (boolean type)

Terms e ::= x (variable)
| $\lambda x: T.e$ (abstraction)
| $e \ e$ (application)
| $true$ (true)
| $false$ (false)
| if e then e else e (conditional branch)

Values v ::= $\lambda x.e$
| $true$
| $false$

Reduction

\[
(T\text{-app-L}) \quad \frac{e_1 \to e_1'}{e_1 e_2 \to e_1' e_2'}
\quad (T\text{-app-R}) \quad \frac{e_2 \to e_2'}{v_1 e_2 \to v_1 e_2'}
\quad (T\text{-\beta}) \quad \frac{\lambda x: T.e}{e_1 \ x \mapsto v_1 \to e_1[x \mapsto v_2]}
\]

\[
(T\text{-cond-B}) \quad \frac{e_1 \to e_1'}{if \ e_1 \ then \ e_2 \ else \ e_3 \to if \ e_1' \ then \ e_2 \ else \ e_3}
\]

\[
(T\text{-cond-L}) \quad \frac{if \ true \ then \ e_1 \ else \ e_2 \to e_1}
\quad (T\text{-cond-R}) \quad \frac{if \ false \ then \ e_1 \ else \ e_2 \to e_2}
\]

We then wrote down typing rules for the calculus.

Type environments Γ ::= \cdot (empty)
| $\Gamma; x : T$ (augment)

Type judgements ::= $\Gamma \vdash e : T$

The notation $x : T \in \Gamma$ means that the rightmost binding of x in Γ is $x : T$. We write $\vdash e : T$ to mean $\cdot \vdash e : T$.

\[
(A\text{-\var}) \quad \frac{x : T \in \Gamma}{\Gamma \vdash x : T}
\quad (\to\text{-I}) \quad \frac{\Gamma, x : T \vdash e : T'}{\lambda x : T.e : T \to T'}
\quad (\to\text{-E}) \quad \frac{\Gamma \vdash e_1 : T \to T' \quad \Gamma \vdash e_2 : T}{\Gamma \vdash e_1 \ e_2 : T'}
\quad (\text{ax-\true}) \quad \frac{}{\Gamma \vdash true : B}
\quad (\text{ax-\false}) \quad \frac{}{\Gamma \vdash false : B}
\]
$$
\frac{(B\varepsilon) \quad \Gamma \vdash e_1 : B \quad \Gamma \vdash e_2 : T \quad \Gamma \vdash e_3 : T} \quad \Gamma \vdash \text{if } e_1 \text{ then } e_2 \text{ else } e_3 : T
$$

We say e is well-typed iff $\vdash e : T$ for some T.

3.1 A digression

We conjectured that it should be possible to encode true and false in the pure λ calculus, and hence derive the typing rules AX-TRUE, AX-FALSE and $B\varepsilon$. Initial attempts pointed towards the necessity of universal types in the type system. For example, one could define

Types T ::= $T \rightarrow T$

| t

Boolean types B_T = $T \rightarrow T \rightarrow T$

Boolean values true_T = $\lambda t : T. \lambda f : T. t$

false_T = $\lambda t : T. \lambda f : T. f$

Conditional branch if-then-else_T = $\lambda b : B_T. \lambda x : T. \lambda y : T. b \; x \; y$

Then AX-TRUE is derived as

$$
\frac{t : T \in \Gamma, t : T, f : T \quad \Gamma, t : T \vdash \lambda f : T. t : T} \quad \Gamma \vdash \text{true}_T : B_T
$$

AX-FALSE is derived as

$$
\frac{f : T \in \Gamma, t : T, f : T \quad \Gamma, t : T \vdash \lambda f : T. t : T} \quad \Gamma \vdash \text{false}_T : B_T
$$

Writing $\text{if } e_1 \text{ then } e_2 \text{ else } e_3$ for $\text{if-then-else}_T e_1 \; e_2 \; e_3$, $B\varepsilon$ is derived as

$$
\frac{b : B_T \in \Gamma, b : B_T, x : T, y : T \quad x : T \in \Gamma, b : B_T, x : T, y : T \quad y : T \in \Gamma, b : B_T, x : T, y : T} \quad \Gamma, b : B_T, x : T, y : T \vdash b \; x \; y : T
$$

$$
\frac{b : B_T \in \Gamma, b : B_T, x : T, y : T \quad x : T \in \Gamma, b : B_T, x : T, y : T \quad y : T \in \Gamma, b : B_T, x : T, y : T} \quad \Gamma, b : B_T, x : T, y : T \vdash \lambda x : T. \lambda y : T. b \; x \; y : T \rightarrow T
$$

$$
\frac{\Gamma, b : B_T \vdash \lambda x : T. \lambda y : T. b \; x \; y : T \rightarrow T \quad \Gamma \vdash \text{if-then-else}_T : B_T \rightarrow T \rightarrow T \quad \Gamma \vdash e : B_T} \quad \Gamma \vdash \text{if-then-else}_T \; e_1 \; e_2 \; e_3 : T
$$

$$
\frac{\Gamma \vdash \text{if-then-else}_T : B_T \rightarrow T \rightarrow T \quad \Gamma \vdash e : B_T} \quad \Gamma \vdash \text{if-then-else}_T \; e_1 \; e_2 \; e_3 : T
$$

$$
\frac{\Gamma \vdash \text{if-then-else}_T : B_T \rightarrow T \rightarrow T \quad \Gamma \vdash e : B_T} \quad \Gamma \vdash \text{if-then-else}_T \; e_1 \; e_2 \; e_3 : T
$$

$$
\frac{\Gamma \vdash \text{if-then-else}_T : B_T \rightarrow T \rightarrow T \quad \Gamma \vdash e : B_T} \quad \Gamma \vdash \text{if-then-else}_T \; e_1 \; e_2 \; e_3 : T
$$

$$
\frac{\Gamma \vdash \text{if-then-else}_T : B_T \rightarrow T \rightarrow T \quad \Gamma \vdash e : B_T} \quad \Gamma \vdash \text{if-then-else}_T \; e_1 \; e_2 \; e_3 : T
$$

$$
\frac{\Gamma \vdash \text{if-then-else}_T : B_T \rightarrow T \rightarrow T \quad \Gamma \vdash e : B_T} \quad \Gamma \vdash \text{if-then-else}_T \; e_1 \; e_2 \; e_3 : T
$$

3
4 Proving safety

We discussed two lemmas that are sufficient to prove safety in the simply-typed \(\lambda \) calculus.

Lemma 4.1 (Progress). If \(e \) is well-typed (i.e., \(\vdash e : T \) for some \(T \)) then either \(e \) is a value or \(\exists e' \) such that \(e \rightarrow e' \).

Proof. By induction on the structure of the derivation \(\vdash e : T \).

Lemma 4.2 (Preservation). If \(\vdash e : T \) for some \(T \) and \(\exists e' \) such that \(e \rightarrow e' \), then \(\vdash e' : T \).

Proof. By induction on the structure of the derivation \(\vdash e : T \) and case analysis on \(e \rightarrow e' \).

The following theorem asserts the safety property discussed in §2 for well-typed terms.

Theorem 4.3 (Safety). If \(e \) is well typed and \(e \rightarrow^* e' \) such that \(e' \) is in normal form, then \(e' \) is a value.

Proof. By induction on the length of \(e \rightarrow^* e' \), using Lemmas 4.1 and 4.2.

In fact, a weak version of Lemma 4.2 is sufficient (together with Lemma 4.1) to prove Theorem 4.3.

Lemma 4.4 (Weak preservation). If \(e \) is well-typed and \(\exists e' \) such that \(e \rightarrow e' \), then \(e' \) is well-typed.

5 Venn diagrams for interesting subsets of terms

Figure 1: Subsets of terms in the \(\lambda \) calculus

Figure 1 shows containment relationships between the sets \(V \) (values), \(N \) (terms in normal form), \(YV \) (terms that yield values), \(YN \) (terms that yield normal forms) and \(W \) (well-typed terms).
6 Erasing type annotations

Finally, we agreed that typing does not affect the operational semantics of the language. The function \texttt{erase} erases type annotations on all abstracted variables, giving terms in the untyped language. Thus

\[
\begin{align*}
\text{erase}(x) &= x \\
\text{erase}(\lambda x : T . e) &= \lambda x. \text{erase}(e) \\
\text{erase}(e_1 e_2) &= \text{erase}(e_1) \text{erase}(e_2) \\
\text{erase}(\text{true}) &= \text{true} \\
\text{erase}(\text{false}) &= \text{false} \\
\text{erase}(\text{if } e_1 \text{ then } e_2 \text{ else } e_3) &= \text{if } \text{erase}(e_1) \text{ then } \text{erase}(e_2) \text{ else } \text{erase}(e_3)
\end{align*}
\]

\textbf{Lemma 6.1} (Correspondence of \(\rightarrow\)). For any term \(e\) in the typed language,

1. if \(e \rightarrow e'\) then \(\text{erase}(e) \rightarrow \text{erase}(e')\)
2. if \(\text{erase}(e) \rightarrow e''\) then \(\exists e'. e \rightarrow e'\) and \(e'' = \text{erase}(e')\)

\textbf{Proof.} (1) By induction on the structure of the derivation \(e \rightarrow e'\) and (2) by case analysis on \(e\) and induction on the structure of \(\text{erase}(e) \rightarrow e''\). \(\triangleright\)

In other words, the following diagram commutes.

\[
\begin{array}{ccc}
\text{e} & \rightarrow & \text{e}' \\
\downarrow & & \downarrow \\
\text{erase(e)} & \rightarrow & \text{erase(e)} \\
\end{array}
\]

\textbf{Theorem 6.2} (Correspondence of safety). If \(e\) is well-typed and \(\text{erase}(e) \rightarrow^* e''\) such that \(e''\) is in normal form, then \(e''\) is a value.

\textbf{Proof.} By induction on the length of \(\text{erase}(e) \rightarrow^* e''\) with Lemma 6.1, and using Theorem 4.3. \(\triangleright\)