Follow the leader with Dropout perturbations - Additive versus multiplicative noise

Manfred K. Warmuth

Google Mountain View
August 25, 2015

Joint work with Tim Van Erven and Wojciech Kotłowski

Major insights from [Devroye, Lugosi, Neu 2013]
1. What is dropout?

2. Learning from expert advice

3. Hedge setting

4. The algorithms

5. Proof methods
Feed forward neural net
Weights parameters - sigmoids at internal nodes
Dropout training

- Stochastic gradient descent
- Randomly remove every hidden/input node with prob. $\frac{1}{2}$ before each gradient descent update

[Hinton et al. 2012]
Dropout training

- Very successful in e.g. image classification, speech recognition
- Many people trying to analyse why it works
 - [Wager, Wang, Liang, 2013]
 - [Helmbold, Long, 2014]

Why does it work?

- [Wagner, Wang, Liang, 2013]
- [Helmbold, Long, 2014]
What are we doing?

Prove bounds for dropout
- single neuron
- linear loss
1. What is dropout?

2. Learning from expert advice

3. Hedge setting

4. The algorithms

5. Proof methods
Online learning with expert

<table>
<thead>
<tr>
<th>day 1</th>
<th>E_1</th>
<th>E_2</th>
<th>E_3</th>
<th>...</th>
<th>E_n</th>
<th>prediction</th>
<th>label</th>
<th>loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>...</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Online learning with expert predictions

<table>
<thead>
<tr>
<th></th>
<th>E_1</th>
<th>E_2</th>
<th>E_3</th>
<th>...</th>
<th>E_n</th>
<th>prediction</th>
<th>label</th>
<th>loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>day 1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>...</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>day 2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>...</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Online learning with expert

<table>
<thead>
<tr>
<th></th>
<th>E_1</th>
<th>E_2</th>
<th>E_3</th>
<th>...</th>
<th>E_n</th>
<th>prediction</th>
<th>label</th>
<th>loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>day 1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>...</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>day 2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>...</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>notation</td>
<td>x_1</td>
<td>x_1</td>
<td>x_2</td>
<td>...</td>
<td>x_n</td>
<td>\hat{y}</td>
<td>y</td>
<td>$</td>
</tr>
</tbody>
</table>
Online learning with expert

<table>
<thead>
<tr>
<th>day 1</th>
<th>E_1</th>
<th>E_2</th>
<th>E_3</th>
<th>\ldots</th>
<th>E_n</th>
<th>prediction</th>
<th>label</th>
<th>loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>day 2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>\ldots</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>\ldots</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Notation

- x_1, x_2, \ldots, x_n are the input features.
- \hat{y} is the prediction.
- y is the label.
- $|\hat{y} - y|$ is the loss.

Scope

- x_1, x_2, \ldots, x_n are in $[0, 1]$.
- \hat{y} is in $[0, 1]$.
- y is in $\{0, 1\}$.
- $|\hat{y} - y|$ is in $[0, 1]$.

Algorithm maintains probability vector w:

\[
\text{prediction} = w \cdot x
\]

Loss is linear because label y is in $\{0, 1\}$.

\[
|\hat{y} - y| = \sum_i w_i |x_i - y|
\]
Online learning with expert

<table>
<thead>
<tr>
<th>day 1</th>
<th>E_1</th>
<th>E_2</th>
<th>E_3</th>
<th>...</th>
<th>E_n</th>
<th>prediction</th>
<th>label</th>
<th>loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>...</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>day 2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>...</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

| notation | x_1 | x_1 | x_2 | ... | x_n | \hat{y} | y | $|\hat{y} - y|$ |
| scope | $\in [0, 1]$ | $\in [0, 1]$ | $\in [0, 1]$ | $\in \{0, 1\}$ | $\in [0, 1]$ |

- Algorithm maintains probability vector \mathbf{w}:
 - prediction $\hat{y} = \mathbf{w} \cdot \mathbf{x}$
Online learning with expert

<table>
<thead>
<tr>
<th></th>
<th>E_1</th>
<th>E_2</th>
<th>E_3</th>
<th>...</th>
<th>E_n</th>
<th>prediction</th>
<th>label</th>
<th>loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>day 1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>...</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>day 2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>...</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Notation
- x_1, x_2, \ldots, x_n
- \hat{y}
- y
- $|\hat{y} - y|$
- $\in [0, 1]$
- $\in \{0, 1\}$

Algorithm
- Maintains probability vector w:
 - Prediction $\hat{y} = w \cdot x$

Loss
- Linear because label $y \in \{0, 1\}$
 - $|\hat{y} - y|$
 - $\sum_i w_i |x_i - y|$
Outline

1. What is dropout?
2. Learning from expert advice
3. Hedge setting
4. The algorithms
5. Proof methods
On-line learning

Predicting with expert advice

\[\hat{y} = \mathbf{w} \cdot \mathbf{x} \quad \text{loss } |\hat{y} - y| \]
On-line learning

Predicting with expert advice

\[\hat{y} = w \cdot x \quad \text{loss} \ |\hat{y} - y| \]

trial \(t \)
- get advice vector \(x_t \)
- predict \(\hat{y}_t = w_t \cdot x_t \)
- get label \(y_t \)
- exp. losses \(|x_{t,i} - y_t| \)
- alg. loss \(|\hat{y}_t - y_t| \)
- update \(w_t \rightarrow w_{t+1} \)
Predicting with expert advice

\[\hat{y} = w \cdot x \quad \text{loss} \mid \hat{y} - y \mid \]

Hedge setting

\[\text{loss} \ w \cdot \ell \]

trial \(t \)
- get advice vector \(x_t \)
- predict \(\hat{y}_t = w_t \cdot x_t \)
- get label \(y_t \)
- exp. losses \(\mid x_{t,i} - y_t \mid \)
- alg. loss \(\mid \hat{y}_t - y_t \mid \)
- update \(w_t \rightarrow w_{t+1} \)
On-line learning

Predicting with expert advice
\[\hat{y} = w \cdot x \quad \text{loss} \quad |\hat{y} - y| \]

Hedge setting
\[\text{loss} \quad w \cdot \ell \]

trial \(t \)
- get advice vector \(x_t \)
- predict \(\hat{y}_t = w_t \cdot x_t \)
- get label \(y_t \)
- exp. losses \(|x_{t,i} - y_t| \)
- alg. loss \(|\hat{y}_t - y_t| \)
- update \(w_t \rightarrow w_{t+1} \)

trial \(t \)
- predict \(w_t \)
- get loss vector \(\ell_t \)
- exp. losses \(\ell_{t,i} \)
- alg. loss \(w_t \cdot \ell_t \)
- update \(w_t \rightarrow w_{t+1} \)
Predicting with a random expert

trial t
- predict w_t or predict with random expert \hat{i}_t
Predicting with a random expert

- predict w_t
- get loss vector ℓ_t
- alg. loss $w_t \cdot \ell_t$

or predict with random expert \hat{i}_t

or alg. expected loss $\mathbb{E} \left[e_{\hat{i}_t} \cdot \ell_t \right] = \mathbb{E} \left[e_{\hat{i}_t} \right] \cdot \ell_t$

weights are implicit

Only works for linear loss
Predicting with a random expert

trial \(t \)
- predict \(w_t \)
- get loss vector \(\ell_t \)
- alg. loss \(w_t \cdot \ell_t \)
 or alg. expected loss \(\mathbb{E} \left[e_{\hat{i}_t} \cdot \ell_t \right] = \mathbb{E} \left[e_{\hat{i}_t} \right] \cdot \ell_t \)
- update \(w_t \rightarrow w_{t+1} \)
Predicting with a random expert

- predict w_t
- get loss vector l_t
- alg. loss $w_t \cdot l_t$
- update $w_t \rightarrow w_{t+1}$

Weights are implicit

Only works for linear loss
Worst-case regret

$$\sum_{t=1}^{T} w_t \cdot \ell_t - \inf_{i \leq T} \ell^*$$

total expected loss of alg

loss ℓ^* of best expert

Should be logarithmic in $\#$ of experts n
1. What is dropout?
2. Learning from expert advice
3. Hedge setting
4. The algorithms
5. Proof methods
Main algorithms

<table>
<thead>
<tr>
<th></th>
<th>E_1</th>
<th>E_2</th>
<th>E_3</th>
<th>E_4</th>
<th>E_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t-1$</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>$t-1$</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

day $t - 1$

$l_{\leq t-1,i}$
Main algorithms

<table>
<thead>
<tr>
<th></th>
<th>E_1</th>
<th>E_2</th>
<th>E_3</th>
<th>E_4</th>
<th>E_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 0 0 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 1 0 1 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>day $t - 1$</td>
<td>0 0 1 1 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[\ell_{t-1,i} \]

	1 2 1 2 3			
$\ell_{t-1,i}$				
Main algorithms

\[
\begin{array}{ccccc}
E_1 & E_2 & E_3 & E_4 & E_5 \\
0 & 1 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 & 1 \\
\end{array}
\]

\[
\begin{array}{ccccc}
\text{day } t - 1 & 0 & 0 & 1 & 1 & 1 \\
\ell_{\leq t-1,i} & 1 & 2 & 1 & 2 & 3 \\
\end{array}
\]

\[\hat{i}_t = \arg\min_i \ell_{\leq t-1,i}\] ties broken uniformly

FL
Main algorithms

<table>
<thead>
<tr>
<th></th>
<th>E_1</th>
<th>E_2</th>
<th>E_3</th>
<th>E_4</th>
<th>E_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\begin{align*}
\text{day } t - 1 & \quad 0 \quad 0 \quad 1 \quad 1 \quad 1 \\
\ell_{\leq t-1,i} & \quad 1 \quad 2 \quad 1 \quad 2 \quad 3
\end{align*}

FL \quad \hat{i}_t = \arg\min_i \ell_{\leq t-1,i} \quad \text{ties broken uniformly}

FPL(\eta) \quad \hat{i}_t = \arg\min_i \ell_{\leq t-1,i} + \frac{1}{\eta} \xi_{t,i} \quad \text{indep. additive noise}
Main algorithms

<table>
<thead>
<tr>
<th></th>
<th>E_1</th>
<th>E_2</th>
<th>E_3</th>
<th>E_4</th>
<th>E_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>day 0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$\ell_{\leq t-1,i}$</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

FL

$$\hat{i}_t = \arg\min_i \ell_{\leq t-1,i}$$

ties broken uniformly

FPL(η)

$$\hat{i}_t = \arg\min_i \ell_{\leq t-1,i} + \frac{1}{\eta} \xi_{t,i}$$

indep. additive noise

Hedge(η)

$$w_i = \frac{e^{-\eta \ell_{\leq t-1,i}}}{Z}$$

Weighted Majority algorithm for pred. with Expert Advice

Soft min
Dropout

\[
\begin{array}{cccccc}
E_1 & E_2 & E_3 & E_4 & E_5 \\
0 & \chi & 0 & 0 & \chi \\
1 & 1 & 0 & 1 & 1 \\
\text{day } t - 1 & 0 & 0 & \chi & \chi & 1 \\
\end{array}
\]

\[\hat{\ell}_{\leq t-1,i}\]
\[\hat{\ell}_{t,i} = \beta_{t,i} \ell_{t,i}, \quad \text{where } \beta_{t,i} \text{ iid Bernoulli} \]

\begin{array}{cccccc}
E_1 & E_2 & E_3 & E_4 & E_5 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 1 \\
\hline
day t - 1 & 0 & 0 & 1 & 1 & 1 \\
\hline
\hat{\ell}_{\leq t-1,i} & 1 & 1 & 0 & 1 & 2 \\
\end{array}
Dropout

\[
\begin{array}{cccccc}
E_1 & E_2 & E_3 & E_4 & E_5 \\
0 & \checkmark & 0 & 0 & \checkmark \\
1 & 1 & 0 & 1 & 1 \\
\end{array}
\]

\[
\begin{array}{cccccc}
day \ t - 1 & 0 & 0 & \checkmark & \checkmark & 1 \\
\end{array}
\]

\[
\hat{\ell}_{\leq t-1,i} = 1 \ 1 \ 0 \ 1 \ 2
\]

\[
\hat{\ell}_{t,i} = \beta_{t,i} \ell_{t,i}, \quad \text{where} \ \beta_{t,i} \ \text{iid Bernoulli}
\]

\[
\begin{array}{ccccc}
\times & \times & \times & \times & \ell
\end{array}
\]

FL on dropout

\[
\hat{i}_t = \arg \min_{i} \hat{\ell}_{\leq t-1,i}
\]
How good?

Optimal worst case regret: $\sqrt{L^* \ln n} + \ln n$
How good?

Optimal worst case regret: $\sqrt{L^* \ln n + \ln n}$

- FL is bad
- FPL(η) and Hedge(η) achieve optimal regret with tuning
 - fancy tunings: AdaHedge and Flipflop
How good?

Optimal worst case regret: \(\sqrt{L^* \ln n} + \ln n \)

- FL is bad
- FPL(\(\eta \)) and Hedge(\(\eta \)) achieve optimal regret with tuning
 - fancy tunings: AdaHedge and Flipflop
- FL on dropout requires no tuning
How good?

Optimal worst case regret: $\sqrt{L^* \ln n + \ln n}$

- FL is bad
- FPL(η) and Hedge(η) achieve optimal regret with tuning
 - fancy tunings: AdaHedge and Flipflop
- **FL on dropout** requires no tuning
 - dropout better noise for achieving optimal worst case regret
 - additive noise needs tuning - multiplicative noise does not
- in iid case when gap between 1st and 2nd: $\log n$ regret
Optimal worst case regret: $\sqrt{L^* \ln n + \ln n}$

- FL is bad
- FPL(η) and Hedge(η) achieve optimal regret with tuning
 - fancy tunings: AdaHedge and Flipflop
- FL on dropout requires no tuning
 - dropout better noise for achieving optimal worst case regret
 - additive noise needs tuning - multiplicative noise does not
 - in iid case when gap between 1st and 2nd: $\log n$ regret
- In the meantime
 - new fancy algorithms by
 Haipeng Luo, Rob Schapire & Tim van Erven, Wouter Koolen
How good?

Optimal worst case regret: $\sqrt{L^* \ln n + \ln n}$

- FL is bad
- FPL(η) and Hedge(η) achieve optimal regret with tuning
 - fancy tunings: AdaHedge and Flipflop
- FL on dropout requires no tuning
 - dropout better noise for achieving optimal worst case regret
 - additive noise needs tuning - multiplicative noise does not
 - in iid case when gap between 1st and 2nd: $\log n$ regret

In the meantime
- new fancy algorithms by Haipeng Luo, Rob Schapire & Tim van Erven, Wouter Koolen
- also no tuning, many other advantages
Our path to dropout

- Loss vectors $\ell_t \rightarrow$ loss matrices L_t
- Prob. vectors $w_t \rightarrow$ density matrices W_t
- Hedge $w_{t,i} = \frac{e^{-\eta \ell_{\leq t-1,i}}}{Z} \rightarrow$ Matrix Hedge

$$W_t = \frac{\exp(-\eta L_{\leq t-1})}{Z'}$$

- Matrix Hedge $O(n^3)$ per update
Our path to dropout

- Loss vectors $\ell_t \rightarrow$ loss matrices L_t
- Prob. vectors $w_t \rightarrow$ density matrices W_t
- Hedge $w_{t,i} = \frac{e^{-\eta \ell \leq t-1, i}}{Z} \rightarrow$ Matrix Hedge

$$W_t = \frac{\exp(-\eta L \leq t-1)}{Z'}$$

- Matrix Hedge $O(n^3)$ per update
- FL minimum eigenvector calculation of $L_{\leq t-1}$: $O(n^2)$
Our path to dropout

- Loss vectors $\ell_t \rightarrow$ loss matrices L_t
- Prob. vectors $w_t \rightarrow$ density matrices W_t
- Hedge $w_{t,i} = \frac{e^{-\eta\ell_{\leq t-1,i}}}{Z} \rightarrow$ Matrix Hedge

\[W_t = \frac{\exp(-\eta L_{\leq t-1})}{Z'} \]

- Matrix Hedge $O(n^3)$ per update
- FL minimum eigenvector calculation of $L_{\leq t-1}$: $O(n^2)$
- Is there $O(n^2)$ perturbation with optimal regret bound?
Our path to dropout

- Loss vectors $\mathbf{\ell}_t \rightarrow$ loss matrices \mathbf{L}_t
- Prob. vectors $\mathbf{w}_t \rightarrow$ density matrices \mathbf{W}_t
- Hedge $w_{t,i} = \frac{e^{-\eta \ell_{\leq t-1,i}}}{Z} \rightarrow$ Matrix Hedge

$$\mathbf{W}_t = \exp\left(-\eta \mathbf{L}_{\leq t-1}\right)$$

- Matrix Hedge $O(n^3)$ per update
- FL minimum eigenvector calculation of $\mathbf{L}_{\leq t-1}$: $O(n^2)$
- Is there $O(n^2)$ perturbation with optimal regret bound?
- Follow the skipping leader:
 - Drop entire loss \mathbf{L}_t with probability $\frac{1}{2}$
 - = Online Bagging
Our path to dropout

- Loss vectors $\ell_t \rightarrow$ loss matrices L_t
- Prob. vectors $w_t \rightarrow$ density matrices W_t
- Hedge $w_{t,i} = \frac{e^{-\eta \ell_{\leq t-1,i}}}{Z} \rightarrow$ Matrix Hedge
 \[W_t = \frac{\exp(-\eta L_{\leq t-1})}{Z'} \]
- Matrix Hedge $O(n^3)$ per update
- FL minimum eigenvector calculation of $L_{\leq t-1}$: $O(n^2)$
- Is there $O(n^2)$ perturbation with optimal regret bound?
- **Follow the skipping leader:**
 - Drop entire loss L_t with probability $\frac{1}{2}$
 = Online Bagging
- Proof techniques break down
 - settled for vector case and independent multiplicative noise
 = dropout
Our path to dropout

- Loss vectors $\ell_t \rightarrow$ loss matrices L_t
- Prob. vectors $w_t \rightarrow$ density matrices W_t
- Hedge $w_{t,i} = \frac{e^{-\eta \ell_{\leq t-1,i}}}{Z} \rightarrow$ Matrix Hedge
 $$W_t = \frac{\exp(-\eta L_{\leq t-1})}{Z'}$$
- Matrix Hedge $O(n^3)$ per update
- FL minimum eigenvector calculation of $L_{\leq t-1}$: $O(n^2)$
- Is there $O(n^2)$ perturbation with optimal regret bound?

- **Follow the skipping leader:**
 - Drop entire loss L_t with probability $\frac{1}{2}$
 - = Online Bagging
- Proof techniques break down
 - settled for vector case and independent multiplicative noise
 - = dropout
- **Follow the skipping leader** has linear regret [Lugosi, Neu2014]
What regularization?

Hedge(\(\eta\)) relative entropy
What regularization?

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hedge(η)</td>
<td>relative entropy</td>
</tr>
<tr>
<td>FPL(η)</td>
<td>additive $\frac{1}{\eta}$ log exponential noise \Rightarrow Hedge(η)</td>
</tr>
</tbody>
</table>
What regularization?

\begin{align*}
\text{Hedge}(\eta) & \quad \text{relative entropy} \\
\text{FPL}(\eta) & \quad \text{additive } \frac{1}{\eta} \log \text{exponential noise } = \text{Hedge}(\eta)
\end{align*}

\text{FL on dropout} \quad \text{tricky}

\begin{align*}
\text{Feed forward NN} & \quad \text{[Wagner, Wang, Liang 2013]} \\
\text{Logistic regression} & \quad \text{[Helmbold, Long 2014]} \\
\text{Linear loss case} & \quad \text{[ALST 2014]}
\end{align*}
Outline

1. What is dropout?
2. Learning from expert advice
3. Hedge setting
4. The algorithms
5. Proof methods
Simple algorithms

Any deterministic alg. (such as FL) has huge regret

- For T trials: give algorithm’s expert a unit of loss
- Loss of alg.: T loss of best: $\leq \frac{T}{n}$
Any deterministic alg. (such as FL) has huge regret

- For T trials: give algorithm’s expert a unit of loss
- Loss of alg.: T/L^* loss of best: $\leq \frac{T}{n}$

\[
\text{regret: } \geq \left(\frac{T}{nL^*} - \frac{T}{n} \right) = (n - 1)L^*
\]
Simple algorithms

Any deterministic alg. (such as FL) has huge regret

- For T trials: give algorithm’s expert a unit of loss
- Loss of alg.: T loss of best: $\leq \frac{T}{n}$

$$\text{regret: } \geq \left(\frac{T}{nL^*} \right) - \left(\frac{T}{L^*} \right) = (n - 1)L^*$$

Recall optimum regret: $\sqrt{L^* \ln n} + \ln n$

FL with random ties
Simple algorithms

Any deterministic alg. (such as FL) has huge regret

- For T trials: give algorithm’s expert a unit of loss
- Loss of alg.: T loss of best: $\leq \frac{T}{n}$

\[
\text{regret: } \geq \frac{T}{nL^*} - \frac{T}{nL} = (n-1)L^*
\]

Recall optimum regret: $\sqrt{L^* \ln n + \ln n}$

FL with random ties

- Give every expert one unit of loss
 - iterate $L^* + 1$ times
- Loss per sweep $\frac{1}{n} + \frac{1}{n-1} + \ldots + \frac{1}{2} + 1 \approx \ln n$
- Loss of alg.: $(L^* + 1) \ln n$ loss of best: L^*

regret: $L^* \ln n$
Our analysis of dropout

Unit rule

- Adversary forces more regret by splitting loss vectors into units

\[
\begin{pmatrix} 1 \\ 0 \\ 1 \\ 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}
\]
Our analysis of dropout

Unit rule

- Adversary forces more regret by splitting loss vectors into units

$$\begin{pmatrix} 1 \\ 0 \\ 1 \\ 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \end{pmatrix}$$

Swapping rule

$$\ell_{\leq T,i}$$

<p>| | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$$E_1$$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$$E_2$$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$$E_3$$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$$E_4$$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Our analysis of dropout

Unit rule
- Adversary forces more regret by splitting loss vectors into units

\[
\begin{pmatrix} 1 \\ 0 \\ 1 \\ 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}
\]

Swapping rule
\[\ell_{\leq T,i}\]

<table>
<thead>
<tr>
<th></th>
<th>(E_1)</th>
<th>(E_2)</th>
<th>(E_3)</th>
<th>(E_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 1 1 1 1 1 1 1 1</td>
<td>1 1 1 1 1 1 1 1</td>
<td>1 1 1 1 1 1 1 1</td>
<td>1 1 1 1 1 1</td>
</tr>
<tr>
<td>(\ell)</td>
<td>9</td>
<td>8</td>
<td>10</td>
<td>6</td>
</tr>
</tbody>
</table>

- 1’s occur in some order
- Worst case: 1 before 1
- Otherwise adversary benefits from swapping
Worst-case pattern

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Assume we have \(s \) leaders
Assume we have s leaders

\[
\begin{align*}
\text{s leader get unit} & \\
\text{ignore non-leaders} & \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}
\end{align*}
\]
Cost per sweep

Assume we have s leaders

s leader get unit
ignore non-leaders

\[FL = \frac{1}{s} + \frac{1}{s-1} + \frac{1}{s-2} + \frac{1}{s-3} + \ldots + \frac{1}{s-s-2} + \frac{1}{s-s-1} \]

\[\approx \ln s \]
Cost per sweep

Assume we have \(s \) leaders

\[s \text{ leader get unit } \]
\[\text{ignore non-leaders} \]

\[
\begin{align*}
\text{FL} & = \frac{1}{s} + \frac{1}{s-1} + \frac{1}{s-2} + \frac{1}{s-3} + \ldots + \frac{1}{s-s-2} + \frac{1}{s-s-1} \\
& \approx \ln s
\end{align*}
\]

Dropdown

\[
\begin{align*}
\frac{1}{s} + \frac{1}{s-1/2} + \frac{1}{s-2/2} + \frac{1}{s-3/2} + \ldots + \frac{1}{s-(s-2)/2} + \frac{1}{s-(s-1)/2}
\end{align*}
\]
Cost per sweep

Assume we have \(s \) leaders

\[
\begin{cases}
1 \\
1 \\
1 \\
1
\end{cases}
\]

\(s \) leader get unit
ignore non-leaders

\[
\frac{1}{s} + \frac{1}{s-1} + \frac{1}{s-2} + \frac{1}{s-3} + \ldots + \frac{1}{s-s-2} + \frac{1}{s-s-1}
\]

\(\approx \ln s \)

FL

\[
\frac{2}{2s} + \frac{2}{2s-1} + \frac{2}{2s-2} + \frac{2}{2s-3} + \ldots + \frac{2}{2s-(s-2)} + \frac{2}{2s-(s-1)}
\]

\(\approx 2 (\ln 2s - \ln s) = 2 \ln 2 \)

Dropout
Cost per sweep

Assume we have \(s \) leaders

\[
\begin{align*}
\text{s leader get unit} & \quad 1 \\
\text{ignore non-leaders} & \quad 1 \\
\end{align*}
\]

\[
\text{FL} \quad \frac{1}{s} + \frac{1}{s-1} + \frac{1}{s-2} + \frac{1}{s-3} + \ldots + \frac{1}{s-s-2} + \frac{1}{s-s-1}
\]

\[\approx \ln s\]

Dropout

\[
\frac{2}{2s} + \frac{2}{2s-1} + \frac{2}{2s-2} + \frac{2}{s-3} + \ldots + \frac{2}{2s-(s-2)} + \frac{2}{2s-(s-1)}
\]

\[\approx 2 (\ln 2s - \ln s) = 2 \ln 2\]
$L^* = 0$ - one expert incurs no loss

FL

- One sweep

\[
\frac{1}{n} + \frac{1}{n-1} + \ldots + \frac{1}{2} \approx (\ln n) - 1
\]

- Optimal
$L^* = 0$ - one expert incurs no loss

FL

- One sweep

\[
\frac{1}{n} + \frac{1}{n-1} + \ldots + \frac{1}{2} \approx (\ln n) - 1
\]

- Optimal

Dropout

- # of leaders reduced by half in each sweep

\[
\approx \log_2 n \text{ sweeps times } \leq 2 \ln 2 = 1.386
\]

\[
\leq \ln n
\]
Overview of proof for noisy case

- Focus on first L sweeps
- Only occurs constant regret if number of leaders > 1
Overview of proof for noisy case

- Focus on first L sweeps
- Only occurs constant regret if number of leaders > 1
- Prob. that number of leaders > 1 is at most $\sqrt{\frac{\ln n}{q+1}}$ for sweep q
Overview of proof for noisy case

- Focus on first L sweeps
- Only occurs constant regret if number of leaders > 1

Prob. that number of leaders > 1 is at most $\sqrt{\frac{\ln n}{q+1}}$ for sweep q

For Hedge(η) and FPL(η) cost per sweep constant and dependent on η
Dropout versus Hedge

![Graph showing comparison between Dropout and tuned Hedge](image)

- Dropout
- Tuned Hedge

regret vs sweep t

L^*
Outlook

- Combinatorial experts
- Matrix case
- Where else can dropout perturbations be used?
- Dropout for convex losses
- Dropout for neural nets
Outlook

- Combinatorial experts
- Matrix case
- Where else can dropout perturbations be used?
- Dropout for convex losses
- Dropout for neural nets
- Privacy
Iterate this pattern \(n \) times:

\[
\sum_{i=1}^{n} \left(\frac{n - i}{n - i + 1} + \frac{1}{2} \right)
\]

\[
\approx n - \ln n + \frac{n}{2}
\]

\(L^* = n \): Follow the Scipping Leader has linear regret
How does dropout ovoid this example?

$$\begin{array}{c|c}
0 & 1 \\
1 & 0 \\
1 & 0 \\
1 & 0 \\
1 & 0 \\
\hline
\frac{n-1}{n} & \frac{1}{n-1} \\
\end{array}$$

It leaves the adversary clueless as to who the leader is, i.e., privacy against adversary.
How does dropout ovoid this example?

\[
\begin{array}{c|c}
0 & 1 \\
1 & 0 \\
1 & 0 \\
1 & 0 \\
1 & 0 \\
\end{array}
\]

\[
\begin{array}{c|c}
\frac{n-1}{n} & \frac{1}{2} \\
\end{array}
\]

It leaves the adversary clueless as to who the leader is i.e. privacy against adversary
sparse counter example

\[
\begin{array}{c|c}
0 & 1^* \\
\frac{1}{n-1} & 0 \\
\frac{1}{n-1} & 0 \\
\frac{1}{n-1} & 0 \\
\frac{1}{n-1} & 0 \\
\frac{1}{n^2} & \frac{1}{2} \\
\end{array}
\]

Iterate this pattern \(n \) times:

\[
\sum_{i=1}^{n} \left(\frac{n-i}{(n-i+1)^2} + \frac{1}{2} \right)
\]

\[
= \sum_{i=1}^{n} \left(\frac{1}{n-i+1} - \frac{1}{(n-i+1)^2} + \frac{1}{2} \right)
\]

\[
\approx \ln n - O(1) + \frac{n}{2}
\]

\(L^* = \ln n \): Follow the Scipping Leader has linear regret