ANALYSIS OF HEDGE ALG.

\[\text{POTENTIAL: } P_t = -\ln \sum_i w_{0,i} e^{-\eta L_{t,i}} \]

\[\text{DUE TO NORMALIZATION} \]

\[P_t - P_{t-1} = -\ln \sum_i w_{0,i} e^{-\eta L_{t,i}} + \ln \sum_i w_{t,i} e^{-\eta L_{t-1,i}} \]

\[= -\ln \frac{\sum_i w_{0,i} e^{-\eta L_{t,i}} e^{-\eta L_{t,i}}}{\sum_i w_{0,i} e^{-\eta L_{t-1,i}}} \]

\[= -\ln \sum_i w_{t-1,i} e^{-\eta L_{t,i}} \]

\[\geq -\ln \sum_i w_{t-1,i} \left(1 - (1-e^{-\eta}) L_{t,i} \right) \]

\[e^{-\eta x} \leq 1 - (1-e^{-\eta}) x \]

\[x \in [0,1] \]

\[= -\ln \left(\sum_i w_{t-1,i} - (1-e^{-\eta}) \bar{w}_{t-1} \cdot \bar{L}_t \right) \]

\[\ln(1-x) \leq -x \]

\[\geq (1-e^{-\eta}) \bar{w}_{t-1} \cdot \bar{L}_t \]

DROP OF POTENTIAL

\[\geq (1-e^{-\eta}) \text{ LOSS OF ALG.} \]
\[\sum_{t=1}^{T} P_t - P_{t-1} \geq (1 - e^{-\eta}) \sum_{t=1}^{T} w_{t-1} \cdot L_t \]
\[\sum_{t=1}^{T} P_t - P_{t-1} = \frac{P_T - P_0}{w_0} \]
\[= - \ln \frac{\sum_{i=1}^{L} w_{0,i} e^{-\eta L \leq t, i}}{1} \]
\[\leq - \ln w_{0,i} e^{-\eta L \leq t, i} \]
\[= - \ln w_{0,i} + \eta L \leq t, i \]

\[\sum_{t=1}^{T} w_t \cdot L_t \leq \frac{1}{1-e^{-\eta}} \ln \frac{1}{w_{0,i}} + \eta L \leq t, i \]

If \(\bar{w}_i = \left(\frac{1}{n} \ldots \frac{1}{n} \right) \) THEN \(\ln \frac{1}{w_{0,i}} = \ln n \)
- CAN HANDLE LOTS OF EXPERTS

\[L_{\text{alg}} \leq \frac{1}{1-e^{-\eta}} \ln n + \frac{\eta}{1-e^{-\eta}} L \leq t, i \] (\(*\))

\[\eta = 1.58 \ln n + 1.58 L \leq t, i \]
\[\uparrow \text{WANT 1} \]

IF \(\hat{L} \geq L^* \) AND \(\eta = \sqrt{\frac{2 \ln n}{n}} \) THEN

\[\text{REGRET BOUND} \]

\[(*) \leq \min \frac{L \leq t, i}{{L^*}} + \sqrt{2} \ln n + \ln n \]
BIG PICTURE

- We used exponential weights and softmax to achieve regret bounds

- Expected loss bounds hold for arbitrary sequences

- Expectation w.r.t. internal randomization of Alg

- Logarithmic dependence on # of experts, typical for "multiplicative" updates

Questions:

- Lower bounds?

- Motivation of updates?

- Where did the potential come from?

- What about other loss functions?

- Compare against best linear combination of experts?
SO FAR

MASTER

WEIGHTED MAJORITY

EXPONENTIAL WEIGHTS

E_1, E_2, E_3, E_n

LOTS OF "STUPID" EXPERTS ARE "SPECIALIZED"
COMBINED TO SOMETHING BETTER

LATER: BOOSTING
- ITERATIVELY BUILDS
 SMALL LINEAR COMBINATION
 OF WEAK HYPOTHESIS