Designing adaptive online algorithms by maintaining a mixture over a set of experts

Manfred K. Warmuth Corrie Scalisi
Includes some earlier work with
Robert Gramacy, Scott Brandt and Ismail Ari

University of California - Santa Cruz

Feb 22, 2011 - Google Seattle
Outline

1. Two example problems
2. Measuring the on-lineness of the data
3. The expert framework
4. Shifting experts
5. Experimental results
6. Wrap up
1. Disk spindown problem

- When to spin down the disk on your laptop?
- Best time-out time/user/usage dependent
Non-convex loss

If idles times expected to be
- short, then long timeout better
- long, then short timeout better
2. Caching [BWBA]

- Whenever small, fast memory and larger, slower secondary memory.
- Keep objects in faster memory which likely to be needed again soon:
 - Hit if requested object resides in cache
 - Miss otherwise
Caching Policies

- Decides which objects to discard to make room for new requests
- 7 common policies: LRU, RAND, FIFO, LIFO, LFU and MFU
- 5 fancy recent policies: SIZE, GDS, GD*, GDSF, LFUDA
- Criteria:
 - Recency and frequency of access
 - Size of objects
 - Cost of fetching object from secondary memory
- De facto standard: LRU
Two example problems

Which Policy to Choose?

- For which situation?
 - Disk access on PC
 - Web proxy access via browser
 - File server on local network
 - Middle of the night - during backup
 - Application as well as time dependent

- Choosing one is suboptimal

- All policies claimed to be on-line/adaptive
Characteristics Vary with Time
Best Policy Varies with time
Outline

1. Two example problems
2. Measuring the on-lineness of the data
3. The expert framework
4. Shifting experts
5. Experimental results
6. Wrap up
First trick: Permute the data

- Data not on-line if permuting does not change things

- Algorithm not adaptive, if same performance on permuted data
 - adaptive, if better performance on unpermuted data
Measuring the on-lineness of the data

Permuting trick for disk spindown data

on-line :-) not on-line :-(
Measuring the on-lineness of the data

Permuting caching data

Highly on-line data

Some caching policies already on-line
Using a **comparators** to measure on-lineness of data

Properties

- Should exploit on-lineness of data
- Might be too expensive to compute in practice, but can serve as a goal to compare against
- Might rely on information not available to the on-line algorithm
Good comparators?

- BestFixed chosen in hind-sight
 - Does not capture on-lineness of data since same performance on original and permuted data

Optimal algorithm

- Spin down iff next idle time > spindown cost
- Captures on-lineness, but may be unrealistic
Reasonable comparator for the disk spindown problem

BestShift(K) for spindown problem
- Partition of the timeline into segments
- BestFixed in each segment

| 2 | 4 | 7 |

point representing partition

average energy

total # of shifts
BestFixed\((K)\)

Dynamic programming: \(O(KN^2T)\)

where \(K\) # of partitions, \(N\) # of discrete idle times, \(T\) # of trials
Measuring the on-lineness of the data

BestShift curves

- BestShift(K) on Cello-2 Data
 50 experts exponentially spaced between 0 and 10

- BestShift(K) on Intel dataset
 50 experts exponentially spaced between 0 and 10

on-line

Average cost per idle time

- K: # of shifts of timeout value
- 2558765 trials of Cello-2, Spindown Cost = 10 sec.

not on-line

Average cost per idle time

- K: # of shifts of timeout value
- 12458 trials of Intel Data, Spindown Cost = 10 sec.
Comparators for caching

- **BestFixed**: a posteriori best of 12 policies on entire request stream
- **BestRefetching**(R):
 minimum number of misses with at most R refetches in any sequence of switching policies
Comparator: All sequences of the form

GDSF LFUDA SIZE GDSF LRU

We plot miss rate v.s. refetches:
Measuring the on-lineness of the data

BestRefetching(R)

Dynamic programming: $O(RN^2 T)$
Goal for on-line algorithms

- Beat BestFixed (easy)
- Get close to BestShift / BestRefetching
- In caching reduce I/O’s and end-user latency
- Fast algorithms
Measuring the on-lineness of the data

Score card for caching algorithms

- A = Total I/Os less than BestFixed
- B = Total I/Os less than LRU
- C = Total I/O more than LRU

+ = Better than BestRefetching
- = Worse than BestFixed

- miss + refetch <= LRU miss
- miss + refetch <= BestFixed miss

0% Refetches as % of Total Requests
Outline

1. Two example problems
2. Measuring the on-lineness of the data
3. The expert framework
4. Shifting experts
5. Experimental results
6. Wrap up
What experts?

Caching:
- 12 caching policies

Disk spin down:
- Discretize interval \([0, \text{spindowncost}]\)
On-line algorithm for learning as well as best experts

One weight per expert

- Represent confidence of master algorithm in expert
- Master algorithm predicts with convex combination of experts

Loss update: \(w_{i}^{t+1} \sim \frac{w_{i}^{t}e^{-\eta L_{i}^{t}}}{Z_{t}} \) \([LW,V]\)

- Designed to do well against BestFixed
- In some cases \(\log N \) regret
Outline

1. Two example problems
2. Measuring the on-lineness of the data
3. The expert framework
4. Shifting experts
5. Experimental results
6. Wrap up
As well as best partition

- **Loss Update** follows too well
- Follow it by **Share Update**:
 - Mix in small in $\alpha = 5\%$ times past average weight
 - Updates recover after each shift
 - Faster recovery if expert was used before
 - In some cases regret = # of bits to encode best partition
Outline

1. Two example problems
2. Measuring the on-lineness of the data
3. The expert framework
4. Shifting experts
5. **Experimental results**
6. Wrap up
Spindown results

Experimental results

on-line :-)

not on-line :-((

M. Warmuth (UCSC)
Designing adaptive online algorithms

31 / 38
Experimental results

Caching - we “Tracks” best policy

![Miss-rates under FSUP with Master](image)

Miss-rates under FSUP with Master

- lru
- fifo
- mru
- lifo
- size
- lfu
- mfu
- rand
- gds
- gdsf
- lfuda
- gd
- roll
Experimental results

WWk

WWk Master and Comparator Missrates

8.5% = LRU missrate
2.0% = Obligatory missrate

- BestRefetching(R)
- Rank Ideal
- Rank 60% Ideal
- Rank 40% Ideal
- BestFixed = SIZE
- AllVC

Refetches as % of Total Requests

Missrates %
UMo Master and Comparator Missrates

16.6% = LRU missrate
1.5% = Obligatory missrate

- BestRefetching(R)
- Rank Ideal
- Rank 60% Ideal
- Rank 40% Ideal
- BestFixed = GDS
- AllVC
Pushing the theoretical analysis

Disk spindown:
- Non-convex loss, but in each trial only two loss values
- Experts are sorted
- Analyze with continuously many experts

Caching:
- Prove bounds for ARChing
The upshot

- Measure on-lineness of data
- Design algorithms that provably exploit on-lineness
- Many simple on-line problems amenable to theoretical analysis