Topics in Optimization

Karen Glocer

Updated: April 27, 2009
Unconstrained optimization

You want to minimize a function $f(x)$. Notation:

- f_k - value of objective function at point x_k
- ∇f_k - gradient of f at point x_k
- W_k - Hessian of f at point x_k

Newton’s Method

1. Choose an initial starting point x_0, tolerance ϵ
2. for $k = 0, 1, \ldots$
 1. evaluate f_k, ∇f_k, W_k
 2. Find search direction $p = -W_k^{-1}\nabla f_k$
 3. Find step size α via line search
 4. $x_{k+1} = x_k + \alpha p$
 5. if $\max(|p|) \leq \epsilon$, stop with approximate solution x_{k+1}
Illustration of quadratic approximation

Value for $\eta=10$

Dual

Taylor

w_1

Updated: April 27, 2009
Potential problems with Newton’s method

Value for $\eta = 30$

Dual

Taylor

w_1

Karen Glocer ()

Topics in Optimization

Updated: April 27, 2009
Constrained Optimization

You still want to minimize a function $f_0(x)$, but now there are constraints.

$$\min_{x} f_0(x)$$ \hspace{1cm} (1)

subject to $f_i(x) \leq 0$, $i = 1 \ldots m$

$g_i(x) = 0$, $i = 1 \ldots n$.

- **constraint**: restrictions on the value of x: e.g. $0 \leq x \leq 1$.
- **feasible set**: the set of all points x that satisfy the constraints.
- The best x in the unconstrained problem may not satisfy the constraints.
Quadratic Approximation of Problem

- Newton’s method, $p = W_k^{-1} \nabla f_0(x_k)$
- In constrained optimization, p is found by solving the following quadratic program:

\[\begin{align*}
\text{minimize} \quad & \frac{1}{2} p^T W_k p + \nabla f_0^T p \\
\text{subject to} \quad & \nabla f_i(x_k)^T p + f_i(x_k) \leq 0, \quad i = 1 \ldots m \\
& \nabla g_i(x_k)^T p + g_i(x_k) = 0, \quad i = 1 \ldots n.
\end{align*}\]
Algorithm for solving Constrained Problem

The difference between this algorithm and the classical Newton method is that now we have to solve a quadratic program to find the search direction p.

Sequential Quadratic Programming (SQP)

1. Choose an initial starting point x_0, tolerance ϵ
2. for $k = 0, 1, \ldots$
 1. evaluate f_k, ∇f_k, W_k
 2. Find search direction p by solving (2)
 3. Find step size α via line search
 4. $x_{k+1} = x_k + \alpha p$
 5. if $\max(|p|) \leq \epsilon$, stop with approximate solution x_{k+1}
Quasi-Newton Method for unconstrained optimization

- Alternative to Newton’s method that is faster and more robust.
- Quasi-Newton methods use an approximate Hessian.
- Most popular quasi-Newton method: BFGS

Broyden Fletcher Goldfarb Shanno (BFGS)

- Newton’s method requires the inverse of the Hessian
- For an \(N \times N \) matrix, inversion is \(O(N^3) \)
- BFGS approximates the inverse Hessian. (No inversion needed)
- BFGS is more numerically stable than Newton:
 - Newton’s method can behave badly if given a bad starting point
 - BFGS is more robust to bad starting points
The BFGS Algorithm

1. Choose an initial starting point \((x_0)\), tolerance \(\epsilon > 0\), inverse Hessian approximation \(H_0\).

2. \(k = 0\)

3. while \(\|\nabla f_k\| > \epsilon\)

 1. Find search direction \(p = -H_k \nabla f_k\)

 2. Find step size \(\alpha\) via line search

 3. \(x_{k+1} = x_k + \alpha p\)

 4. \(s_k = x_{k+1} - x_k\) and \(y_k = \nabla f_{k+1} - \nabla f_k\)

 5. \(H_{k+1} = (I - \rho_k s_k y_k^T)H_k(I - \rho_k y_k s_k^T) + \rho_k s_k s_k^T\), where \(\rho_k = 1/(y_k^T s_k)\).

 6. \(k = k + 1\)

4. return \(x_k\)
Large scale problems

- Let N be the number of variables of your problem.
- Then the Hessian will be an $N \times N$ matrix.
- Common to solve problems with millions of variables.
- A matrix of $10^6 \times 10^6$ doubles requires 8000 GB.
- Multiplying matrix by vector is $O(N^2)$ - very expensive
- Want 2 things:
 1. Approximate Hessian with $O(N)$ storage
 2. Way to multiply Hessian by gradient without ever constructing the Hessian

Only keep the last m values of s_k and y_k
Choose an initial starting point \((x_0)\), tolerance \(\epsilon > 0\), integer \(m > 0\).

1. \(k = 0\)
2. \(k = k + 1\)
3. while \(\|\nabla f_k\| > \epsilon\)
 1. Choose \(H_k^0\). One way to do this is \(H_k^0 = \frac{s_{k-1}^T y_{k-1}}{y_{k-1}^T y_{k-1}} I\)
 2. Find search direction \(p = -H_k \nabla f_k\)
 3. Find step size \(\alpha\) via line search
 4. \(x_{k+1} = x_k + \alpha p\)
 5. if \(k > m\), discard \(\{s_{k-m}, y_{k-m}\}\) from storage
 6. \(s_k = x_{k+1} - x_k\) and \(y_k = \nabla f_{k+1} - \nabla f_k\)
 7. \(H_{k+1} = (I - \rho_k s_k y_k^T) H_k (I - \rho_k y_k s_k^T) + \rho_k s_k s_k^T\), where \(\rho_k = 1/(y_k^T s_k)\).
 8. \(k = k + 1\)

return \(x_k\)
Implicit matrix-vector multiplication

LBFGS find direction

1. \(q = \nabla f_k \)
2. for \(i = k - 1, k - 2, \ldots, k - m \)
 1. \(\alpha_i = \rho_i s_i^T q \)
 2. \(q = q - \alpha_i y_i \)
3. \(r = H_k^0 q \)
4. for \(i = k - m, k - m + 1, \ldots, k - 1 \)
 1. \(\beta = \rho_i y_i^T r \)
 2. \(r = r - s_i (\alpha_i - \beta) \)
5. return \(r \), which equals \(H_k \nabla f_k \)
Solving a constrained QP

\[\min_p \frac{1}{2} p^T A p + c^T p \]

subject to \(l \leq p \leq u \)
\[a^T p = b. \]

Simplest case:

- \(A \) is an \(N \times N \) symmetric matrix
- All inequality constraints are box constraints
- There is a single equality constraint.
- If \(A \) is diagonal, this can be solved in \(O(N \log N) \) time.
Dai-Fletcher Outline

The algorithm works by constructing a partial Lagrangian:

- Move the equality constraint to the objective function.
- Give it a Lagrange multiplier λ.

$$
\phi(p, \lambda) = \frac{1}{2} p^T A p + c^T p - \lambda (a^T p - b)
$$

Key point: If the original problem has a feasible solution, then there exists a λ^* such that the optimal solution of $\phi(p, \lambda)$ will satisfy the equality constraint.

- Fix λ and solve this optimization problem for p.
- If $\lambda = \lambda^*$, then $r(\lambda) := a^T p - b = 0$
- The optimal p will equal the optimal p from the previous problem.
Applying the box constraints

Unlike some kinds of constraints, box constraints are easy to enforce. Let d_i bet the i^{th} diagonal element of A. For any fixed value of λ, one can solve $\phi(p)$ as follows:

- Without box constraints, the optimal solution for $\phi(p)$ is
 $$h_i = \frac{(c_i + \lambda a_i)}{(d_i)}$$

- With box constraints, the optimal solution for $\phi(p)$ is
 $$p(\lambda) = \text{mid}(l, h, u).$$ (4)

- The operation mid is the componentwise median of (l, h, u).
- This takes $O(N)$ operations.
Finding the right λ

$$r(\lambda) := a^T p - b$$ is nondecreasing in λ
Potential problems with Dai-Fletcher
Potential problems with Dai-Fletcher

\[r(\lambda) = (\sum_{q=1}^{t} w_q) - 1 \]

- first and last hyp
- all hypotheses
Gradient Projection

Solve problem of the form \(\min f(x) \) subject to \(x \in \Omega \), where \(\Omega \) is a closed convex set. Notation

- \(P(z) = \arg\min_x \| x - z \|_2^2 : x \in \Omega \) is called a projection
- It finds the point in \(\Omega \) that is closest to \(z \) w.r.t the 2-norm.
- Let \(x^* \) be the solution to \(\min f(x) \) subject to \(x \in \Omega \)

Then \(P(x^* - \alpha \nabla f(x^*)) = x^* \) for all \(\alpha \geq 0 \).
Gradient Projection Algorithm

1. Initialize starting point $x_0 \in \Omega$, $\gamma \in [0,1]$, $c \in (0,1)$

2. while not converged:

 1. Set $p_k = P(x_k - \nabla f(x_k)) - x_k$
 2. Set

 $$\lambda_k = \max \gamma^s$$
 subject to $s \in \{0, 1, 2, \ldots\}$

 $$f(x_k + \gamma^s p_k) - f(x_k) \leq c \gamma^s \nabla f(x_k)^T p_k$$

 3. Set $x_{k+1} = x_k + \lambda_k p_k$
Spectral Projected Gradient Notation

This differs from the vanilla gradient projection algorithm only in the way that it computes the step size.

Input to algorithm

- $M > 1$ Nonmonotone
- $0 \leq \alpha_{\text{min}} < \alpha_{\text{max}}$ are bounds on the step size
- $\gamma \in [0, 1]$ sufficient decrease parameter for potential step size
- $0 < \sigma_1 < \sigma_2 < 1$
Spectral Projected Gradient

1. If \[\|P(x_k - g(x_k)) - x_k\| = 0, \] stop

2. Backtracking
 1. Compute \[p_k = P(x_k - \alpha_k g(x_k)) - x_k, \] \(\lambda = 1 \)
 2. set \(x_+ = x_k + \lambda d_k \)
 3. if \(f(x_+) \leq \max_{0 \leq j \leq \min(k, M-1)} f(x_{k-j}) + \gamma \lambda (p_k^T g_k) \)
 \[\lambda_k = \lambda, \ x_{k+1} = x_+, \ s_k = x_{k+1} - x_k, \ y_k = g(x_{k+1}) - g(x_l). \]
 4. else find \(\lambda \) via quadratic interpolation and enforce \(\lambda \in [\sigma_1 \lambda, \sigma_2 \lambda] \)

3. Set \(\alpha_k \)
 1. Compute \(b_k = s_k^T y_k \)
 2. if \(b_k \leq 0, \ \alpha_{k+1} = \alpha_{\text{max}} \)
 3. else compute \(\alpha_k = s_k^T s_k, \ \alpha_{k+1} = \min(\alpha_{\text{max}}, \max(\alpha_{\text{min}}, \alpha_k / b_k)) \)