Transient Rendering

Adam Smith
James Skorupski

University of California, Santa Cruz
December 11, 2007
CMPS 290B
{amsmith, jskorups}@cs.ucsc.edu
Motivation

There is growing interest in time-of-flight based computer vision applications and we want some general, physical explanation of measurements we make.

Our contribution:
a formal model that let’s us do just that
Background

• We want
 ▫ Rigorous analysis
 ▫ Specific to light
 ▫ Transient effects

• What’s out there
 ▫ LIDAR
 ▫ SONAR
 ▫ Rendering Equation
LIDAR

- **NO**: Rigorous analysis
- **YES**: Specific to light
- **YES**: Transient effects

(UC Santa Cruz)

(UC Davis)
SONAR

• YES: Rigorous analysis
• NO: Specific to light
• YES: Transient effects

Height field of two sunken ships

(USGS)

Overview (Transponder in yellow)

(NOAA)
Rendering Equation

- YES: Rigorous analysis
- YES: Specific to light
- NO: Transient effects

\[L = L_0 + G \circ L \]

where

- L is total light
- \(L_0 \) is emitted light
- G is global transport (single bounce)

The rendering equation is

\[I(x, x') = g(x, x') \left[e(x, x') + \int g(x, x'', x') \rho(x, x', x'') \right] \]

where:
- \(I(x, x') \) is the related to the intensity of light passing from point \(x' \) to point \(x \)
- \(g(x, x') \) is a “geometry” term
- \(e(x, x') \) is related to the intensity of emitted light from \(x' \) to \(x \)
- \(\rho(x, x'x'') \) is related to the intensity of light scattered from \(x'' \) to \(x \) by a patch of surface at \(x' \)

(Kajiya, 1986)
The Important Distinction

Steady state vs. transient light transport
Visualization

- Steady state: Where the light comes out
Visualization

- Transient: *When* the light comes out
Visualization
Visualization
Visualization
Visualization
Visualization
Visualization

- Note: Top pulse wins the race!
Energy vs. Power

<table>
<thead>
<tr>
<th>Steady State</th>
<th>Transient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy (Joules)</td>
<td>Power (Watts)</td>
</tr>
<tr>
<td>Number of photons received</td>
<td>Rate of photons received</td>
</tr>
<tr>
<td>Radiance</td>
<td>Radiant flux</td>
</tr>
</tbody>
</table>
Infinite vs. Finite

<table>
<thead>
<tr>
<th>Steady State</th>
<th>Transient</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{Delay}(X, Y) = 0$</td>
<td>$\text{Delay}(X, Y) = \frac{</td>
</tr>
</tbody>
</table>

- X, Y are points
- c is the speed of light
Functions

<table>
<thead>
<tr>
<th>Steady State</th>
<th>Transient</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L = f(X, \omega))</td>
<td>(F = g(X, \omega, t))</td>
</tr>
</tbody>
</table>

- \(X \) is a point
- \(\omega \) is a direction
- \(t \) is a time
Transient Rendering Equation

(our contribution)

\[F(t) = F_0(t) + G \circ F(t) \]
Transient Rendering Equation

- Global light transport G is the composition of two physical processes
 - propagation, P
 - delays light over distances
 - scattering, S
 - same as traditional rendering

$$G \circ F(t) = S \circ P \circ F(t)$$
Example

a) 1-d world with two surfaces A and B, eye E and light L
b) result of transient rendering
c) light seen at E over time

- Input: positions, scattering kernels, initial light emission
- Output: received light power at every point, every direction, and every time
Example

a) 1-d world with two surfaces A and B, eye E and light L
b) result of transient rendering
c) light seen at E over time

- Input: positions, scattering kernels, initial light emission
- Output: received light power at every point, every direction, and every time
Example

a) 1-d world with two surfaces A and B, eye E and light L
b) result of transient rendering
c) light seen at E over time

- Input: positions, scattering kernels, initial light emission
- Output: received light power at every point, every direction, and every time
a) 1-d world with two surfaces A and B, eye E and light L
b) result of transient rendering
c) light seen at E over time

- Input: positions, scattering kernels, initial light emission
- Output: received light power at every point, every direction, and every time
Example

a) 1-d world with two surfaces A and B, eye E and light L
b) result of transient rendering
c) light seen at E over time

- Input: positions, scattering kernels, initial light emission
- Output: received light power at every point, every direction, and every time
Sensor Model

- Turns ideal worlds into ground truth sensor readings
- Takes into account:
 - Sampled function of time
 - Integration over shutter window
 - Light pulse envelope
 - Discrete photons
- Produces: sequence of energy measurements
New Research Directions

• Applications: do things we could not do before
• Building sensors: capture transient patterns directly
• Theory: generalize and compute
Some Applications

- 3.0D range finding (hidden surfaces)
- Subsurface scattering estimation from time instead of space samples
- Model-based LIDAR applications
Building Sensors

• Existing LIDAR hardware measures the data we need, but throws most of it away
Theory

- **Generalize**
 - Wavelength
 - Subsurface scattering
 - Phosphorescence

- **Compute**
 - Dependency calculation
 - Function representations
 - Augment a common raytracer
Theory

- **Generalize**
 - Wavelength
 - Subsurface scattering
 - Phosphorescence

- **Compute**
 - Dependency calculation
 - Function representations
 - Augment a common raytracer
Conclusion

We have taken initial steps into exploring the effects of the light propagation delay, and called this *Transient Rendering*.

We hope that transient rendering can serve as a principled foundation for future time-of-flight based computer vision techniques.