Solution Set 4

Solution Set provided courtesy of Shankar Ponnekanti and Sriram Raghavan

1 Problem 1.

(a) The SELECT keyword in SQL actually does the work of the projection operator (π) in relational algebra. The SELECT operator in relational algebra selects tuples from a relation based on a given condition whereas the SELECT keyword in SQL projects out a specified set of attributes from a given relation.

(b) The given relational algebra expression can be converted to the following SQL statement:

SELECT attribute-list
FROM R, S
WHERE R.B = S.B AND condition

2 Problem 2.

The converted relational algebra expressions are as follows:

(a) $\sigma_Q \text{ and } M(R) \bowtie \sigma_P \text{ and } M(S)$

(b) $(\sigma_Q(R) \bowtie S) \cup (\sigma_P(S) \bowtie R)$

(c) $\pi_E(\pi_D(\pi_C(\sigma_Q \text{ and } M(R)) \bowtie \sigma_P \text{ and } M(S)) \bowtie \pi_{D,E}(T))$

3 Problem 3

Plan 1. 1500 random I/O’s will be needed to read all the blocks of r. We need to determine for each tuple of r, the number of tuples of s such that $r.B = s.B$. This is given by $n_s/V(B, S)$ provided we assume that all values $r.B$ also occur in s. This is the number of s tuples that need to be retrieved for each r tuple. Since for relation s, the index on B is not clustered, this would require $n_s/V(B, S)$ I/O’s for each r tuple. Doing the check on the C attribute does not require further I/O’s. Hence
No. of I/Os = \(n_1 = 1500 + \frac{n_r n_s}{V(B, S)} \)
\[= 1500 + \frac{750000 \times 250000}{50000} \]
\[= 1500 + 3750000 \]
\[= 3751500 \]

All these I/O’s are random I/O’s. We assume that time for random I/O is \(t_r \) and time for sequential I/O is \(t_s \). Then time needed for Plan 1 is \(n_1 t_r = 3751500 t_r \).

Plan 2. Again 1500 random I/O’s will be needed to read all the blocks of \(r \). The number of \(s \) tuples retrieved for each \(r \) tuple is \(n_s / V(C, S) \), assuming again that all values of \(C \) attribute in \(r \) are also present in \(s \). Since the index on the \(C \) attribute is clustered, these tuples will be present on approximately \(\frac{n_s}{V(C, S) \times 100} \) blocks. But all these I/O’s (except the first I/O) are sequential. So for every tuple of \(r \), there are \(\frac{n_s}{V(C, S) \times 100} - 1 \) sequential I/O’s and 1 random I/O (for the first block). Hence

\[
\text{Total no. of I/Os} = 1500 + \frac{n_r n_s}{V(C, S) \times 100} \]
\[= 1500 + \frac{750000 \times 250000}{50 \times 100} \]
\[= 1500 + 3750000 \]
\[= 3751500 \]

\[
\text{No of sequential I/O's} = n_r (\frac{n_s}{V(C, S) \times 100} - 1) \]
\[= 750000 \times 250000 \]
\[= 36750000 \]
\[= 10n_1 \text{ (approximately)} \]

\[
\text{No of random I/O's} = 1500 + n_r \]
\[= 751500 \]
\[= 0.2n_1 \text{ (approximately)} \]

Hence we have

\[
\text{Time for Plan 2} = 10n_1 t_s + 0.2n_1 t_r \]
\[= n_1 t_r (10 \frac{t_s}{t_r} + 0.2) \]

If \(10 \frac{t_s}{t_r} + 0.2 < 1 \), i.e., if \(\frac{t_s}{t_r} > 12.5 \), then we expect Plan 2 to do better. Otherwise, Plan 1 does better.

\(V(C, S) = 500 \): In this case, cost of Plan 1 remains the same. For Plan 2:

\[
\text{Total no. of I/Os} = 1500 + \frac{n_r n_s}{V(C, S) \times 100} \]
\[\text{No of sequential I/O's} = n_r \left(\frac{n_s}{V(C, S) * 100} - 1 \right) \]

\[= 750000 \left(\frac{250000}{50000} - 1 \right) \]

\[= 300000 \]

\[= 0.8n_1 \text{ (approximately)} \]

\[\text{No of random I/O's} = 1500 + n_r \]

\[= 751500 \]

\[= 0.2n_1 \text{ (approximately)} \]

Time for Plan 2 is given by \(n_1 t_r (0.8\frac{n_s}{100} + 0.2) \) which is less than \(n_1 t_r \) since \(\frac{t_r}{t_r} < 1 \). Hence Plan 2 definitely does better.

Assuming No of tuples returned depends on the domain size: For Plan 1:

\[\text{No. of I/Os} = n_1 = 1500 + \frac{n_r n_s}{DOM(B, S)} \]

\[= 1500 + \frac{750000 \cdot 250000}{1000} \]

\[= 187501500 \]

All these I/O’s are random I/O’s. Time needed for Plan 1 is \(n_1 t_r = 187501500 t_r \).

For Plan 2:

\[\text{Total no. of I/Os} = 1500 + \frac{n_r n_s}{DOM(C, S) * 100} \]

\[= 1500 + \frac{750000 \cdot 250000}{100 \cdot 100} \]

\[= 1500 + 18750000 \]

\[= 18751500 \]

\[\text{No of sequential I/O’s} = n_r \left(\frac{n_s}{DOM(C, S) * 100} - 1 \right) \]

\[= 750000 \left(\frac{250000}{10000} - 1 \right) \]

\[= 1800000 \]

\[= 0.1n_1 \text{ (approximately)} \]

\[\text{No of random I/O’s} = 1500 + n_r \]

\[= 751500 \]

\[= 0.004n_1 \text{ (approximately)} \]

So time for Plan 2 is \(n_1 t_r (0.1\frac{n_r}{t_r} + 0.004) \). Obviously, Plan 2 does better in this case.