Notes 4: Indexing

Arthur Keller

Topics
- Conventional indexes
- B-trees
- Hashing schemes

Sequential File

Dense Index

Sparse Index

Chapter 4

Indexing & Hashing

value → record

value
Sequential File

Sparse 2nd level

- Comment:
 \{FILE, INDEX\} may be contiguous or not (blocks chained)

Question:
- Can we build a dense, 2nd level index for a dense index?

Notes on pointers:
(1) Block pointer (sparse index) can be smaller than record pointer

Notes on pointers:
(2) If file is contiguous, then we can omit pointers (i.e., compute them)
Sparse vs. Dense Tradeoff

- **Sparse**: Less index space per record can keep more of index in memory
- **Dense**: Can tell if any record exists without accessing file

(Later:
- sparse better for insertions
- dense needed for secondary indexes)

Terms

- Index sequential file
- Search key (≠ primary key)
- Primary index (on Sequencing field)
- Secondary index
- Dense index (all Search Key values in)
- Sparse index
- Multi-level index

Next:

- Duplicate keys
- Deletion/Insertion
- Secondary indexes

Duplicate keys

Dense index, one way to implement?

10	10
20	20
30	30
40	40

Dense index, better way?

10	10
20	20
30	30
40	45
Sparse index, one way?

Duplicate keys

Sparse index, another way?

- place first new key from block

should this be 40?

Duplicate values, primary index

- Index may point to first instance of each value only

Deletion from sparse index

- delete record 40

Deletion from sparse index

- delete record 30
Deletion from sparse index
- delete records 30 & 40

Deletion from dense index
- delete record 30

Deletion from dense index
- delete records 30 & 40

Insertion, sparse index case
- insert record 34

- our lucky day!
 we have free space
 where we need it!

Insertion, sparse index case
- insert record 15

- Illustrated: Immediate reorganization
- Variation:
 - insert new block (chained file)
 - update index
Insertion, sparse index case

- insert record 25

overflow blocks (reorganize later...)

Insertion, dense index case

- Similar
- Often more expensive . . .

Secondary indexes

- Sparse index

does not make sense!

With secondary indexes:

- Lowest level is dense
- Other levels are sparse

Also: Pointers are record pointers (not block pointers; not computed)
Duplicate values & secondary indexes

Problem:
excess overhead!
- disk space
- search time

Another idea (suggested in class):
Chain records with same key?

Problems:
- Need to add fields to records
- Need to follow chain to know records

Why “bucket” idea is useful

Indexes Records
Name: primary EMP (name,dept,floor,....)
Dept: secondary
Floor: secondary
Query: Get employees in (Toy Dept) ∩ (2nd floor)

This idea used in text information retrieval

IR QUERIES
- Find articles with “cat” and “dog”
- Find articles with “cat” or “dog”
- Find articles with “cat” and not “dog”
- Find articles with “cat” in title
- Find articles with “cat” and “dog” within 5 words

Common technique: more info in inverted list

Posting: an entry in inverted list. Represents occurrence of term in article

IR DISCUSSION
- Stop words
- Truncation
- Thesaurus
- Full text vs. Abstracts
- Vector model
Vector space model

\[
\begin{align*}
\text{DOC} &= <1 \ 0 \ 0 \ 1 \ 1 \ 0 \ 0 \ ... > \\
\text{Query} &= <0 \ 0 \ 1 \ 1 \ 0 \ 0 \ 0 \ ... > \\
\text{PRODUCT} &= 1 + \ldots = \text{score}
\end{align*}
\]

• Tricks to weigh scores + normalize

e.g.: Match on common word not as useful as match on rare words...

• How to process VS. Queries?

\[
\begin{align*}
\text{w1} \ \text{w2} \ \text{w3} \ \text{w4} \ \text{w5} \ \text{w6} \ \ldots \\
\text{Q} &= <0 \ 0 \ 0 \ 1 \ 1 \ 0 \ \ldots >
\end{align*}
\]

• Try Altavista, Excite, Infoseek, Lycos...

Summary so far

• Conventional index

 – Basic Ideas: sparse, dense, multi-level...
 – Duplicate Keys
 – Deletion/Insertion
 – Secondary indexes
 – Buckets of Postings List

Conventional indexes

Advantage:
 - Simple
 - Index is sequential file
 good for scans

Disadvantage:
 - Inserts expensive, and/or
 Lose sequentiality & balance
Example Index (sequential)

Continuous free space

overflow area (not sequential)

Outline:

- Conventional indexes
- B-Trees \(\Rightarrow \) NEXT
- Hashing schemes

• NEXT: Another type of index
 - Give up on sequentiality of index
 - Try to get "balance"

B+Tree Example

Sample non-leaf

Sample leaf node:
In textbook’s notation

n = 3

Leaf:

Non-leaf:

Size of nodes:

\[n+1 \text{ pointers} \]
\[n \text{ keys} \]

(fixed)

Don’t want nodes to be too empty

- Use at least

\[\left\lceil \frac{n+1}{2} \right\rceil \text{ pointers} \]

\[\left\lfloor \frac{n+1}{2} \right\rfloor \text{ pointers to data} \]

B+tree rules

Tree of order \(n \)

(1) All leaves at same lowest level

(balanced tree)

(2) Pointers in leaves point to records

except for “sequence pointer”

(3) Number of pointers/keys for B+tree

<table>
<thead>
<tr>
<th></th>
<th>Max ptrs</th>
<th>Max keys</th>
<th>Min ptrs - data</th>
<th>Min keys</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-leaf (non-root)</td>
<td>(n+1)</td>
<td>(n)</td>
<td>(\left\lceil \frac{n+1}{2} \right\rceil)</td>
<td>(\left\lfloor \frac{n+1}{2} \right\rfloor) - 1</td>
<td></td>
</tr>
<tr>
<td>Leaf (non-root)</td>
<td>(n+1)</td>
<td>(n)</td>
<td>(\left\lceil \frac{n+1}{2} \right\rceil)</td>
<td>(\left\lfloor \frac{n+1}{2} \right\rfloor)</td>
<td></td>
</tr>
<tr>
<td>Root</td>
<td>(n+1)</td>
<td>(n)</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Insert into B+tree
(a) simple case
 - space available in leaf
(b) leaf overflow
(c) non-leaf overflow
(d) new root

(a) Insert key = 32
\[n=3 \]

(b) Coalesce with neighbor (sibling)
(c) Re-distribute keys
(d) Cases (b) or (c) at non-leaf

Deletion from B+tree
(a) Simple case - no example
(b) Coalesce with neighbor (sibling)
(c) Re-distribute keys
(d) Cases (b) or (c) at non-leaf
(b) Coalesce with sibling
- Delete 50

(c) Redistribute keys
- Delete 50

(d) Non-leaf coalesce
- Delete 37

B+tree deletions in practice
- Often, coalescing is not implemented
 - Too hard and not worth it!

Comparison: B-trees vs. static indexed sequential file

Ref #1: Held & Stonebraker
 "B-Trees Re-examined"
 CACM, Feb. 1978

Ref #1 claims:
- Concurrency control harder in B-Trees
- B-tree consumes more space

For their comparison:
 block = 512 bytes
 key = pointer = 4 bytes
 4 data records per block
Example: 1 block static index

127 keys

\[(127 + 1) \times 4 = 512 \text{ Bytes}\]

-> pointers in index implicit! up to 127 blocks

Example: 1 block B-tree

63 keys

\[63 \times (4 + 4) + 8 = 512 \text{ Bytes}\]

-> pointers needed in B-tree blocks because index is not contiguous

Size comparison

<table>
<thead>
<tr>
<th>Static Index</th>
<th>Ref. #1</th>
</tr>
</thead>
<tbody>
<tr>
<td># data blocks</td>
<td>height</td>
</tr>
<tr>
<td>2 (\rightarrow) 127</td>
<td>2</td>
</tr>
<tr>
<td>128 (\rightarrow) 16,129</td>
<td>3</td>
</tr>
<tr>
<td>16,130 (\rightarrow) 2,048,383</td>
<td>4</td>
</tr>
</tbody>
</table>
| 250,048 \(\rightarrow\) 15,752,961 | 5

Ref. #1 analysis claims

- For an 8,000 block file, after 32,000 inserts after 16,000 lookups

\[\Rightarrow\] Static index saves enough accesses to allow for reorganization

Ref. #1 conclusion Static index better!!

Ref #2: M. Stonebraker, “Retrospective on a database system,” TODS, June 1980

Ref. #2 conclusion B-trees better!!

- DBA does not know when to reorganize
- DBA does not know how full to load pages of new index

Ref. #2 conclusion B-trees better!!
• Buffering
 – B-tree: has fixed buffer requirements
 – Static index: must read several overflow blocks to be efficient
 (large & variable size buffers needed for this)

Ref. #2 conclusion B-trees better!!

• Speaking of buffering...
 Is LRU a good policy for B+tree buffers?
 → Of course not!
 → Should try to keep root in memory at all times
 (and perhaps some nodes from second level)

Interesting problem:
For B+tree, how large should n be?

\[n \text{ is number of keys / node} \]

Sample assumptions:
(1) Time to read node from disk is
 \((70+0.05n)\) msec.
(2) Once block in memory, use binary search to locate key:
 \((a + b \log_2 n)\) msec.
 For some constants \(a, b\): Assume \(a << 70\)
(3) Assume B+tree is full, i.e.,
 # nodes to examine is \(\log_n N\)
 where \(N = \#\) records

\[f(n) = \text{time to find a record} \]

FIND \(n_{opt}\) by \(f'(n) = 0\)
Answer is \(n_{opt} = \text{“few hundred”}\)
(see homework for details)

What happens to \(n_{opt}\) as
 • Disk gets faster?
 • CPU get faster?
Variation on B+tree: B-tree (no +)

- Idea:
 - Avoid duplicate keys
 - Have record pointers in non-leaf nodes

B-tree example

- sequence pointers not useful now!
 (but keep space for simplicity)

Note on inserts

- Say we insert record with key = 25

So, for B-trees:

<table>
<thead>
<tr>
<th></th>
<th>MAX</th>
<th>MIN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tree Ptrs</td>
<td>Rec Ptrs</td>
</tr>
<tr>
<td>Non-leaf non-root</td>
<td>n+1</td>
<td>n</td>
</tr>
<tr>
<td>Leaf non-root</td>
<td>1</td>
<td>n</td>
</tr>
<tr>
<td>Root non-leaf</td>
<td>n+1</td>
<td>n</td>
</tr>
<tr>
<td>Root Leaf</td>
<td>1</td>
<td>n</td>
</tr>
</tbody>
</table>

Tradeoffs:

- B-trees have faster lookup than B+trees
- in B-tree, non-leaf & leaf different sizes
- in B-tree, deletion more complicated

∴ B+trees preferred!
But note:
• If blocks are fixed size (due to disk and buffering restrictions)
 Then lookup for B+tree is actually better!!

Example:
- Pointers 4 bytes
- Keys 4 bytes
- Blocks 100 bytes (just example)
- Look at full 2 level tree

Example:
- Pointers 4 bytes
- Keys 4 bytes
- Blocks 100 bytes (just example)
- Look at full 2 level tree

B-tree:
Root has 8 keys + 8 record pointers + 9 son pointers
= 8x4 + 8x4 + 9x4 = 100 bytes
Each of 9 sons: 12 rec. pointers (+12 keys)
= 12x(4+4) + 4 = 100 bytes
2-level B-tree, Max # records = 12x9 + 8 = 116

B+tree:
Root has 12 keys + 13 son pointers
= 12x4 + 13x4 = 100 bytes
Each of 13 sons: 12 rec. ptrs (+12 keys)
= 12x(4 +4) + 4 = 100 bytes
2-level B+tree, Max # records = 13x12 = 156

So...

8 records

B+
156 records

B
108 records
Total = 116

• Conclusion:
 – For fixed block size,
 – B+ tree is better because it is bushier

Outline/summary
• Conventional Indexes
 • Sparse vs. dense
 • Primary vs. secondary
• B trees
 • B+trees vs. B-trees
 • B+trees vs. indexed sequential
• Hashing schemes --> Next