CS 277: Database System Implementation

Notes 02: Hardware

Arthur Keller
Outline

• Hardware: Disks
• Access Times
• Example - Megatron 747
• Optimizations
• Other Topics:
 – Storage costs
 – Using secondary storage
 – Disk failures
Typical Computer

Secondary Storage
Processor
Fast, slow, reduced instruction set, with cache, pipelined...
Speed: $100 \rightarrow 500 \rightarrow 1000$ MIPS

Memory
Fast, slow, non-volatile, read-only,...
Access time: $10^{-6} \rightarrow 10^{-9}$ sec.
$1 \mu s \rightarrow 1$ ns
Secondary storage
Many flavors:

- Disk: Floppy (hard, soft)
 Removable Packs
 Winchester
 Ram disks
 Optical, CD-ROM...
 Arrays

- Tape Reel, cartridge
 Robots
Focus on: “Typical Disk”

Terms: Platter, Head, Actuator
Cylinder, Track
Sector (physical),
Block (logical), Gap
Top View
“Typical” Numbers

- Diameter: 1 inch → 15 inches
- Cylinders: 100 → 2000
- Surfaces: 1 (CDs) →
 (Tracks/cyl) 2 (floppies) → 30
- Sector Size: 512B → 50K
- Capacity: 360 KB (old floppy) → 70 GB (I use)
Disk Access Time

I want block X

? block x in memory
Time = Seek Time + Rotational Delay + Transfer Time + Other
Seek Time

3 or 5x

Time

x

1

N

Cylinders Traveled
Average Random Seek Time

\[
S = \frac{\sum_{i=1}^{N} \sum_{\substack{j=1 \atop j \neq i}}^{N} \text{SEEKTIME (i \rightarrow j)}}{N(N-1)}
\]

“Typical” \(S \): \(10 \text{ ms} \rightarrow 40 \text{ ms} \)
Rotational Delay

Head Here

Block I Want
Average Rotational Delay

R = 1/2 revolution

“typical” R = 8.33 ms (3600 RPM)

Faster disks now 7200 RPM (R = 4.17 ms)

Fastest disks now 10,000 RPM (R = 3 ms)
Complication

• May have to wait for start of track before we can read desired block
Transfer Rate: t

- “typical” t: 1 \rightarrow 3 MB/second
- transfer time: block size $\frac{t}{t}$
Other Delays

- CPU time to issue I/O
- Contention for controller
- Contention for bus, memory

“Typical” Value: 0
• So far: Random Block Access
• What about: Reading “Next” block?
If we do things right (e.g., Double Buffer, Stagger Blocks,...)

Time to get = Block Size + Negligible block

- skip gap
- switch track
- once in a while, next cylinder
Rule of Thumb

Random I/O: Expensive
Sequential I/O: Much less

• Ex: 1 KB Block
 » Random I/O: \(\sim 20\) ms.
 » Sequential I/O: \(\sim 1\) ms.
Cost for Writing similar to Reading

.... unless we want to verify!

need to add (full) rotation + Block size
To **Modify** a Block?

To Modify Block:

(a) Read Block
(b) Modify in Memory
(c) Write Block

[(d) Verify?]
Block Address:

- Physical Device
- Cylinder #
- Surface #
- Sector
Complication: Bad Blocks

- Messy to handle
- May map via software to integer sequence

\[
\begin{align*}
\{1, 2, \ldots, m\} & \quad \text{Map} \\
\rightarrow & \quad \text{Actual Block Addresses}
\end{align*}
\]
An Example Megatron 747 Disk (old)

- 3.5 in diameter
- 3600 RPM
- 1 surface
- 16 MB usable capacity (16×2^{20})
- 128 cylinders
- seek time: average = 25 ms.
 adjacent cyl = 5 ms.
• 1 KB blocks = sectors
• 10% overhead between blocks
• capacity = 16 MB = (2^{20})16 = 2^{24}
• # cylinders = 128 = 2^7
• bytes/cyl = 2^{24}/2^7 = 2^{17} = 128 KB
• blocks/cyl = 128 KB / 1 KB = 128
3600 RPM \rightarrow 60 revolutions / sec
\rightarrow 1 rev. = 16.66 msec.

One track:

Time over useful data: $(16.66)(0.9)=14.99$ ms.
Time over gaps: $(16.66)(0.1)=1.66$ ms.
Transfer time 1 block = $14.99/128=0.117$ ms.
Trans. time 1 block+gap=$16.66/128=0.13$ms.
Burst Bandwidth

1 KB in 0.117 ms.

\[BB = \frac{1}{0.117} = 8.54 \text{ KB/ms.} \]

or

\[BB = 8.54 \text{ KB/ms} \times 1000 \text{ ms/1 sec} \times \frac{1 \text{ MB}}{1024 \text{ KB}} = \frac{8540}{1024} = 8.33 \text{ MB/sec} \]
Sustained bandwidth (over track)
128 KB in 16.66 ms.

SB = 128/16.66 = 7.68 KB/ms

or

SB = 7.68 x 1000/1024 = 7.50 MB/sec.
\[T_1 = \text{Time to read one random block} \]

\[T_1 = \text{seek} + \text{rotational delay} + TT \]

\[= 25 + (16.66/2) + .117 = 33.45 \text{ ms.} \]

assuming we do not have to wait for track start
Suppose OS deals with 4 KB blocks

\[T_4 = 25 + (16.66/2) + (.117) \times 1 + (.130) \times 3 = 33.83 \text{ ms} \]

[Compare to \(T_1 = 33.45 \text{ ms} \)]
$T_T = \text{Time to read a full track} \\
\text{(start at any block)} \\
T_T = 25 + (0.130/2) + 16.66^* = 41.73 \text{ ms}$

* Actually, a bit less; do not have to read last gap.
The **NEW** Megatron 747 (Example 11.1 book)

- 8 Surfaces, 3.5 Inch diameter
 - outer 1 inch used
- \(2^{13} = 8192\) Tracks/surface
- 256 Sectors/track
- \(2^9 = 512\) Bytes/sector
• 8 GB Disk
• If all tracks have 256 sectors
 • Outermost density: 100,000 bits/inch
 • Inner density: 250,000 bits/inch
• Outer third of tracks: 320 sectors
• Middle third of tracks: 256
• Inner third of tracks: 192

• Density: 114,000 → 182,000 bits/inch
Timing for new Megatron 747 (Ex 11.3)

• Time to read 4096-byte block:
 – MIN: 0.5 ms
 – MAX: 33.5 ms
 – AVE: 14.8 ms
Outline

• Hardware: Disks
• Access Times
• Example: Megatron 747
• Optimizations
• Other Topics
 – Storage Costs
 – Using Secondary Storage
 – Disk Failures
Optimizations (in controller or O.S.)

- Disk Scheduling Algorithms
 - e.g., elevator algorithm
- Track (or larger) Buffer
- Pre-fetch
- Arrays
- Mirrored Disks
Double Buffering

Problem: Have a File
 » Sequence of Blocks B1, B2

Have a Program
 » Process B1
 » Process B2
 » Process B3
 ·
Single Buffer Solution

(1) Read B1 → Buffer
(2) Process Data in Buffer
(3) Read B2 → Buffer
(4) Process Data in Buffer ...
Say \(P = \) time to process/block

\(R = \) time to read in 1 block

\(n = \) # blocks

Single buffer time = \(n(P+R) \)
Double Buffering

Memory:

Disk: C D E F G
done done

process

process

C B
Say \(P \geq R \)

\[
\begin{align*}
P &= \text{Processing time/block} \\
R &= \text{IO time/block} \\
n &= \# \text{ blocks}
\end{align*}
\]

What is processing time?

- Double buffering time \(= R + nP \)
- Single buffering time \(= n(R+P) \)
Block Size Selection?

- Big Block \rightarrow Amortize I/O Cost

Unfortunately...

- Big Block \Rightarrow Read in more useless stuff! and takes longer to read
Trend

• As memory prices drop, blocks get bigger ...
Storage Cost

- **Access Time (sec):**
 - 10^{-9}
 - 10^{-6}
 - 10^{-3}
 - 10^{0}
 - 10^{3}

- **Typical Capacity (bytes):**
 - 10^{3}
 - 10^{5}
 - 10^{7}
 - 10^{9}
 - 10^{11}
 - 10^{13}
 - 10^{15}

- **Storage Types:**
 - Cache
 - Electronic main
 - Electronic secondary
 - Magnetic optical disks
 - Optical disks
 - Nearline tape & optical disks
 - Online tape
 - Tape & optical disks
 - Offline tape

From Gray & Reuter
Storage Cost

from Gray & Reuter

dollars/MB

access time (sec)

cache

10^4

10^2

electronic main

10^0

electronic secondary

10^{-2}

magnetic optical disks

10^{-4}

online tape

nearline tape & optical disks

10^{-6}

offline tape

10^{-9}

CS 277 – Spring 2002 Notes 2
Using secondary storage effectively
(Sec. 11.3)

• Example: Sorting data on disk

• Conclusion:
 – I/O costs dominate
 – Design algorithms to reduce I/O

• Also: How big should blocks be?
Disk Failures (Sec 11.5)

• Partial → Total
• Intermittent → Permanent
Coping with Disk Failures

• Detection
 – e.g., Checksum

• Correction
 ⇒ Redundancy
At what level do we cope?

- Single Disk
 - e.g., Error Correcting Codes
- Disk Array
→ Operating System
e.g., Stable Storage

Logical Block → Copy A → Copy B
→ Database System

- e.g.,

Current DB Log Last week’s DB
Summary

- Secondary storage, mainly disks
- I/O times
- I/Os should be avoided, especially random ones...
Outline

• Hardware: Disks
• Access Times
• Example: Megatron 747
• Optimizations
• Other Topics
 – Storage Costs
 – Using Secondary Storage
 – Disk Failures