CS 277: Database System Implementation

Notes 02: Hardware

Arthur Keller

Outline
- Hardware: Disks
- Access Times
- Example - Megatron 747
- Optimizations
- Other Topics:
 - Storage costs
 - Using secondary storage
 - Disk failures

Hardware

DBMS

Data Storage

Typical Computer

P

M

C

Secondary Storage

Processor
Fast, slow, reduced instruction set, with cache, pipelined...
Speed: 100 → 500 → 1000 MIPS

Memory
Fast, slow, non-volatile, read-only,...
Access time: $10^{-6} → 10^9$ sec.
1 μs → 1 ns

Secondary storage
Many flavors:
- Disk: Floppy (hard, soft)
 Removable Packs
 Winchester
 Ram disks
 Optical, CD-ROM...
 Arrays
- Tape: Reel, cartridge
 Robots
Focus on: “Typical Disk”

Terms: Platter, Head, Actuator
 Cylinder, Track
 Sector (physical), Block (logical), Gap

"Typical" Numbers
Diameter: 1 inch → 15 inches
Cylinders: 100 → 2000
Surfaces: 1 (CDs) → (Tracks/cyl) 2 (floppies) → 30
Sector Size: 512B → 50K
Capacity: 360 KB (old floppy) → 70 GB (I use)

Disk Access Time
I want block X in memory

Time = Seek Time + Rotational Delay + Transfer Time + Other
Average Random Seek Time

\[S = \sum_{i=1}^{N} \sum_{j=1, j \neq i}^{N} \text{SEEKTIME (i \rightarrow j)} \]

N(N-1)

“Typical” S: 10 ms → 40 ms

Rotational Delay

\[R = \frac{1}{2} \text{ revolution} \]

“typical” R = 8.33 ms (3600 RPM)

Faster disks now 7200 RPM (R = 4.17 ms)

Fastest disks now 10,000 RPM (R = 3 ms)

Complication

• May have to wait for start of track before we can read desired block

Transfer Rate: t

• “typical” t: 1 → 3 MB/second

Transfer time: \(\frac{\text{block size}}{t} \)

Other Delays

• CPU time to issue I/O
• Contention for controller
• Contention for bus, memory

“Typical” Value: 0
• So far: Random Block Access
• What about: Reading “Next” block?

If we do things right (e.g., Double Buffer, Stagger Blocks,...)

Time to get = \(\frac{\text{Block Size}}{t} + \text{Negligible} \)
- skip gap
- switch track
- once in a while, next cylinder

Rule of Thumb
Random I/O: Expensive
Sequential I/O: Much less

• Ex: 1 KB Block
 » Random I/O: \(-\) 20 ms.
 » Sequential I/O: \(-\) 1 ms.

Cost for Writing similar to Reading
.... unless we want to verify!
need to add (full) rotation + \(\frac{\text{Block size}}{t} \)

To Modify a Block?
To Modify Block:
(a) Read Block
(b) Modify in Memory
(c) Write Block
[(d) Verify?]

Block Address:
• Physical Device
• Cylinder #
• Surface #
• Sector
Complication: Bad Blocks
- Messy to handle
- May map via software to integer sequence

\[
\text{Map} \rightarrow \text{Actual Block Addresses}
\]

An Example: Megatron 747 Disk (old)
- 3.5 in diameter
- 3600 RPM
- 1 surface
- 16 MB usable capacity (16 \times 2^{20})
- 128 cylinders
- Seek time: average = 25 ms.
 adjacent cyl = 5 ms.

- 1 KB blocks = sectors
- 10% overhead between blocks
- Capacity = 16 MB = (2^{20})16 = 2^{24}
- # cylinders = 128 = 2^{7}
- bytes/cyl = 2^{24}/2^{7} = 2^{17} = 128 KB
- blocks/cyl = 128 KB / 1 KB = 128

\[\text{3600 RPM} \rightarrow 60 \text{ revolutions / sec} \rightarrow 1 \text{ rev.} = 16.66 \text{ msec.}\]

One track:

Time over useful data: (16.66)(0.9) = 14.99 ms.
Time over gaps: (16.66)(0.1) = 1.66 ms.
Transfer time 1 block = 14.99/128 = 0.117 ms.
Trans. time 1 block + gap = 16.66/128 = 0.13 ms.

\[\text{Burst Bandwidth}\]
1 KB in 0.117 ms.
\[\text{BB} = 1/0.117 = 8.54 \text{ KB/ms.}\]
or
\[\text{BB} = 8.54 \text{ KB/ms} \times 1000 \text{ ms/1 sec} \times 1 \text{ MB/1024 KB} = 8540/1024 = 8.33 \text{ MB/sec}\]

\[\text{Sustained bandwidth}\]
(over track)
128 KB in 16.66 ms.
\[\text{SB} = 128/16.66 = 7.68 \text{ KB/ms}\]
or
\[\text{SB} = 7.68 \times 1000/1024 = 7.50 \text{ MB/sec.}\]
\[T_1 = \text{Time to read one random block} \]
\[T_1 = \text{seek} + \text{rotational delay} + \text{TT} \]
\[= 25 + (16.66/2) + .117 = 33.45 \text{ ms.} \]
assuming we do not have to wait for track start

Suppose OS deals with 4 KB blocks
\[T_4 = 25 + (16.66/2) + (.117) \times 1 + (.130) \times 3 = 33.83 \text{ ms} \]
[Compare to \(T_1 = 33.45 \text{ ms} \)]

\[T_T = \text{Time to read a full track} \]
(start at any block)
\[T_T = 25 + (0.130/2) + 16.66^* = 41.73 \text{ ms} \]
to get to first block
* Actually, a bit less; do not have to read last gap.

The NEW Megatron 747 (Example 11.1 book)
- 8 Surfaces, 3.5 Inch diameter
 - outer 1 inch used
- \(2^{13} = 8192 \) Tracks/surface
- 256 Sectors/track
- \(2^{9} = 512 \) Bytes/sector

- 8 GB Disk
- If all tracks have 256 sectors
 - Outermost density: 100,000 bits/inch
 - Inner density: 250,000 bits/inch

- Outer third of tracks: 320 sectors
- Middle third of tracks: 256
- Inner third of tracks: 192
- Density: 114,000 → 182,000 bits/inch
Timing for new Megatron 747 (Ex 11.3)

- Time to read 4096-byte block:
 - MIN: 0.5 ms
 - MAX: 33.5 ms
 - AVE: 14.8 ms

Outline

- Hardware: Disks
- Access Times
- Example: Megatron 747
- Optimizations
- Other Topics
 - Storage Costs
 - Using Secondary Storage
 - Disk Failures

Optimizations (in controller or O.S.)

- Disk Scheduling Algorithms
 - e.g., elevator algorithm
- Track (or larger) Buffer
- Pre-fetch
- Arrays
- Mirrored Disks

Double Buffering

Problem: Have a File
 » Sequence of Blocks B1, B2

Have a Program
 » Process B1
 » Process B2
 » Process B3

Single Buffer Solution

(1) Read B1 → Buffer
(2) Process Data in Buffer
(3) Read B2 → Buffer
(4) Process Data in Buffer ...

Say P = time to process/block
 R = time to read in 1 block
 n = # blocks

Single buffer time = n(P+R)
Double Buffering

Memory:

Disk:

Say \(P \geq R \)

\[p = \text{Processing time/block} \]
\[r = \text{IO time/block} \]
\[n = \# \text{blocks} \]

What is processing time?

- Double buffering time = \(R + nP \)
- Single buffering time = \(n(R+P) \)

Block Size Selection?

- Big Block \(\rightarrow \) Amortize I/O Cost

Unfortunately...

- Big Block \(\Rightarrow \) Read in more useless stuff!
 and takes longer to read

Trend

- As memory prices drop,
 blocks get bigger ...

Storage Cost

from Gray & Reuter
Using secondary storage effectively
(Sec. 11.3)
• Example: Sorting data on disk
• Conclusion:
 – I/O costs dominate
 – Design algorithms to reduce I/O
• Also: How big should blocks be?

Disk Failures (Sec 11.5)
• Partial → Total
• Intermittent → Permanent

Coping with Disk Failures
• Detection
 – e.g., Checksum
• Correction
 ⇒ Redundancy

At what level do we cope?
• Single Disk
 – e.g., Error Correcting Codes
• Disk Array

Operating System
e.g., Stable Storage

→ Database System
e.g.,

- Current DB
- Log
- Last week’s DB
Summary

• Secondary storage, mainly disks
• I/O times
• I/Os should be avoided,
 especially random ones.....

Outline

• Hardware: Disks
• Access Times
• Example: Megatron 747
• Optimizations
• Other Topics
 – Storage Costs
 – Using Secondary Storage
 – Disk Failures
 here