1. Show that every rule-based conjunctive query is satisfiable. In other words, for every rule-based conjunctive query Q that is specified over a relational database schema R, there is an instance I of R such that $Q(I)$ is non-empty.

2. Let R be a binary relation scheme with attributes A and B and let S be a unary relation scheme with attribute C. Prove or disprove that $\Pi_A(R \times S) = \Pi_A(R)$.

3. Let Q_1 and Q_2 be the following two queries:

 $Q_1(y, z) : \neg R(x, y), R(x, z)$

 $Q_2(x, y) : \neg R(x, y)$

 Show that Q_1 is not equivalent to Q_2. In other words, show that either $Q_1 \not\subseteq Q_2$ or $Q_2 \not\subseteq Q_1$.

4. (a) Define what it means for a query to be monotone.

 (b) Let R_1 and R_2 be two identical relation schemes and let r_1 and r_2 be the relations of R_1 and R_2 respectively. The difference of r_1 and r_2, denoted as $r_1 - r_2$, is defined to be the set of tuples that exists in r_1 but do not exist in r_2. Prove that the difference of r_1 and r_2 cannot be expressed with the SPCU algebra. (Hint: Show that every SPCU query is monotone but the query $r_1 - r_2$ is not a monotone query.)