Fixpoint Semantics

- An operational semantics for datalog program from fixpoint theory
- A fixpoint operator or immediate consequence operator, is used to generate new facts from existing facts.
- Fix point semantics (i.e. “the smallest solutions of a fixpoint equation involving fixpoint operator”) concludes with the semantics of a datalog program, i.e. \(P(I) \)

The immediate consequence operator

- Let \(P \) be a datalog program and \(K \) be an instance over the edbs and idbs of \(P \).
- An fact \(A \) is an immediate consequence for \(K \) and \(P \) if either \(A \in K \) for some edb \(R \) or \(A \leftarrow A_1 \ldots A_n \) is an instance (under some valuation) of some rules in \(P \) and each \(A_i \), \(i \in [1,n] \), is in \(K \).

Immediate consequence operator of \(P \) is denoted as \(T_p \)

\[
T_p : \text{inst}(\text{sch}(P)) \rightarrow \text{inst}(\text{sch}(P))
\]

\(K \) is a fixpoint of \(T_p \) if \(T_p(K) = K \)

Fact 3:

1. An instance \(K \) over \(\text{sch}(P) \) is a model of \(\Sigma_p \) iff \(T_p(K) \subseteq K \)
2. Each fixpoint of \(T_p \) is a model of \(\Sigma_p \).

A min of fixpoint of \(T_p \) containing \(I \) is a fixpoint of \(K \) of \(T_p \) containing \(I \) s.t. \(\forall \)fixpoint \(K' \) of \(T_p \) containing \(I \), \(K \subseteq K' \)

Fact 4: For every \(P \) and \(I \), \(T_p \) has a min fixpoint containing \(I \) and is equal \(P(I) \)

Proof: Goal is to show that \(T_p(P(I)) = P(I) \).

\(T_p(P(I)) \subseteq P(I) \) since \(P(I) \) is a normal of \(\Sigma_p \), by fact 3-2

Next. We show that \(P(I) \subseteq T_p(P(I)) \), \(T_p(P(I)) \subseteq P(I) \) and \(T_p \) is monotonic.

We have \(T_p(T_p(P(I))) \subseteq T_p(P(I)) \).

∴ By fact 3-2, we have that \(T_p(P(I)) \) is a modeled of \(\Sigma_p \).

∴ \(P(I) \) contains \(I \), \(T_p(P(I)) \) contains \(I \)

∴ \(T_p(P(I)) \) is a model of \(\Sigma_p \) that contains \(I \).

∴ \(P(I) \) is the min model among all models of \(\Sigma_p \) that contain \(I \), \(P(I) \subseteq T_p(P(I)) \)

\[
\text{TC}(x,y) :- \ E(x,y)
\]
\[
\text{TC}(x,z) :- \ E(x,y), \ \text{TC}(y,z)
\]

\(I = \{ E(1,2), E(3,4), E(2,3), E(4,6), E(8,7) \} \)
\[Tp^1(I) = I \cup \{TC(1,2) \ldots TC(8,7)\} \]
\[Tp^2(I) = Tp(Tp^1(I)) = I \cup \{TC(1,3), TC(3,4), TC(2,4), TC(1,2) \ldots TC(8,7)\} \]
\[Tp^3(I) = Tp(Tp(Tp(I)))) = Tp^2(I) \cup \{TC(2,6), TC(1,4)\} \]
\[Tp^4(I) = \ldots \cup \{TC(1,6)\} \]

Since \(I \subseteq Tp(I) \) (from definition)

We have \(I \subseteq Tp^1(I) \subseteq Tp^2(I) \subseteq Tp^3(I) \)

Let \(N \) be the No. of facts in \(B(P,I) \)

After \(\leq N \) steps, the consequence reaches a fixpoint, that is, \(Tp(Tp^N(I)) = Tp^w(I) \)

Fact 5: Let \(P \) be a datalog program and \(I \) an instance over the edbs of \(P \), then \(Tp^w(I) = P(I) \).

Proof: WTS, that \(Tp^w(I) \) is the min fixpoint of \(Tp \) containing \(I \) and from Fact 4, it follows that \(Tp^w(I) = P(I) \).

\[Tp^w(I) = Tp^N(I). \]

\[\therefore Tp(Tp^w(I)) = Tp(Tp^N(I)) = Tp^N(I) = Tp^w(I) \]

Next we show that \(Tp^w(I) \) is minimum.

Consider any \(J \) that is a fixpoint of \(Tp \) containing \(I \), \(I \subseteq J \).

Base case. \(Tp^0(I) = I \subseteq J. \)

Assume \(Tp^i(I) \subseteq J, \forall i \subseteq K \)

Ind. \(Tp(Tp^{k-1}(I)) = Tp(M) \) where \(M \subseteq J \)

Take a rule in \(P \), show that \(Tp(M) \subseteq J \).

Since \(J \) is a fixpoint, \(Tp^w(I) \) is the min fixpoint of \(Tp \) containing \(I \).

\[
\begin{align*}
S(X1, X3) &:\text{-} T(X1, X2), R(X2, a, X3) \\
T(X1, X4) &:\text{-} R(X1, a, X2), R(X2, b, X3), T(X3, X4) \\
T(X1, X3) &:\text{-} R(X1, a, X2), R(X2, a, X3)
\end{align*}
\]

Instance \(I \) \{ \(R(1,a,2), R(2,b,3), R(3,a,4), R(4,a,5), R(5,a,6) \) \}

![Datalog program and instance tree](image-url)