Datalog

1. **Datalog**

Logic as a data model, refer to chapter 12 of AHV.

The meaning of conjunctive queries
- Find valuations from subgoals into facts in a database; emit the output tuple under that valuation.

Example of a datalog program P:

$$\begin{align*}
TC(x, y) & : \neg E(x, y) \\
TC(x, z) & : \neg E(x, y), TC(y, z)
\end{align*}$$

Fact: The datalog program P cannot be expressed in conjunctive queries.

Three interpretations (or meanings) of a datalog program:
1) Model-Theoretic Interpretation
2) Fixpoint Interpretation
3) Proof-Theoretic Interpretation

They all coincide.

Syntax of datalog program

A datalog rule is an expression of the form

$$R_0(x_0) : - R_1(x_1), ..., R_n(x_n)$$

Where x_i are variables of appropriate entry. Each variable occurring in x_0 must also occur in x_i for some $i \in [1, n]$. Each R_i, $i \in [1, n]$ is a relation (edb: extensional database or idb: intentional database) name.

A datalog program is a finite set of datalog rules

Logic Program vs. Datalog programs

Functions symbols are allowed in logic program, but are not allowed in datalog programs.

Example:

$$\begin{align*}
\text{leq}(0, x) & : - \\
\text{leq}(s(x), s(y)) & : \neg \text{leq}(x, y) \\
\text{leq}(x, \text{plus}(x, y)) & : - \\
\text{leq}(x, z) & : \neg \text{leq}(x, y), \text{leq}(y, z)
\end{align*}$$

$s(y)$ and $\text{plus}(x, y)$ are functions.

2. **Model Theoretic Interpretation**

Idea: view each rules as a logical sentence.

$$\rho \ R_0(x_0) : - R_1(x_1), ..., R_n(x_n)$$

has an associated logical sentence.

$$\rho \ \forall x_1, ..., \forall x_n \ ((R_1(x_1) \wedge ... \wedge (R_n(x_n) \rightarrow R_0(x_0)))$$

$x_1, ..., x_n$ are all variables in the rule.
A model (or instance if you prefer) \(I \) satisfies the rule (or its logical sentence) if for every valuation \(\mu \) such that \(R_1(\overline{x_1}) \ldots \ R_n(\overline{x_n}) \) is in \(I \), \(R_0(\overline{x_0}) \) is also in \(I \). Denoted as \(I = \rho \).

Given a datalog program \(P \), let \(\Sigma_\rho \) denote the conjunction of sentences associated with each rules in \(P \). A model of \(P \) is an instance \(I \) over the relation in \(P \) such that \(I = \Sigma_\rho \).

Example:

\[
\begin{align*}
\rho_1 & : R(x) : \neg S(x) \\
\rho_2 & : S(x) : T(x)
\end{align*}
\]

\[\Sigma = \rho_1 \wedge \rho_2 \]

\[
\begin{align*}
M_0 &= \{s(1), T(0)\} \\
M_1 &= \{T(1), S(1), R(1)\} \\
M_2 &= \{T(1), S(1), R(1), S(2), R(2)\} \\
M_3 &= \{R(1)\} \\
M_4 &= \{R(2)\} \\
M_5 &= \{T(1), S(1)\}
\end{align*}
\]

The right model for \(P \)

Assume our database contains only the relation \(T \) (\(T \) is our edb and \(S \) & \(R \) are our idbs). Given the database instance \(I = \{T(1)\} \) all the following are models of \(P \) w.r.t \(I \).

\[
\begin{align*}
M_1 &= \{T(1), S(1), R(1)\} \\
M_2 &= \{T(1), S(1), R(1), S(2), R(2)\} \\
M_3 &= \{T(1), S(1), R(1), R(3)\}
\end{align*}
\]

Which is “right” model?

\(M_1 \) is special because it is the minimal model. I.e. we cannot discard any fact from \(M_1 \) and still have a model for \(P \) that contains \(I \).

Let \(P \) be a datalog program and \(I \) an instance over the edbs of \(P \). The semantics of \(P \) on input \(I \) denoted as \(P(I) \) is the minimal model of \(P \) containing \(I \).

A fact 1:

\[
B(P,I) \text{ denoted the instance over the schema (edbs & idbs) of } P \text{ such that}
\]

1) For each \(R \) in the edbs of \(P \), a fact \(R(\overline{v}) \in B(P,I) \) iff \(R(\overline{v}) \in I \).

2) For each \(R \) in the idbs of \(P \), a fact \(R(\overline{v}) \) where \(\overline{v} \) contains constants from \(\text{dom}(P,I) \) is in \(B(P,I) \).

Then, \(B(P,I) \) is a model of \(P \) that contains \(I \).

For datalog program \(R(x): S(x) \) and instance \(I = \{T(1), T(2)\} \), \(\text{dom}(P,I) = \{1,2\} \).

And \(B(P,I) = \{T(1), T(2), S(1), S(2), R(1), R(2)\} \)

Proof:

Let \(R_0(\overline{x_0}) : \neg R_1(\overline{x_1}) \ldots \ R_n(\overline{x_n}) \) be a rule in \(P \).

Let \(\mu \) be a valuation so that \(R_1(\mu(x_1)) \ldots \ R_n(\mu(x_n)) \) are facts in \(B(P,I) \).

Then \(B(P,I) \) also contains \(R_0(\mu(x_0)) \) according to (2).

Clearly, \(B(P,I) \) contains \(I \) by (1)
∴ $B(P,I)$ is a model of P that contains I.

There is a unique minimal model.

Fact 2: let P be a datalog program and I an instance over the edbs of P and χ the set of models of P containing I. Then
1) $\cap \chi$ is the minimal of P containing I;
2) $\text{adom}(P(I)) = \text{adom}(P,I)$;
3) For each R in the edbs of P, $P(I)(R) = I(R)$.

Proof:
For part 1:
Let ρ and $R_0(x_0): -R_1(x_1) \ldots R_k(x_k)$ be a rule in P.
Let μ be a valuation of the variables in P.
Claim: if $R_1(\mu(x_1)) \ldots R_k(\mu(x_k))$ occurs in $\cap \chi$ then $R_0(\mu(x_0))$ also occurs in $\cap \chi$.
From the claim, we know $\cap \chi = \rho$, $\cap \chi = \Sigma_P$.
By construction, since every model in χ contains I, $\cap \chi$ contains I.
Also by construction, $\cap \chi$ is the minimal model.

Proof of claim:
Take any model K in χ, since $\cap \chi \subseteq K$,
$R_1(\mu(x_1)) \ldots R_k(\mu(x_k))$ are all in K.
Since $K \models \Sigma_P$, $R_0(\mu(x_0))$ is also in K.
∴ $R_0(\mu(x_0)) \in K$ for every $K \in \chi$.

For part 2:
By fact 1, $B(P,I)$ is a model of P containing I.
∴ $P(I) \subseteq B(P,I)$
∴ $\text{adom}(P(I)) \subseteq \text{adom}(B(P,I)) = \text{adom}(P,I)$

For part 3:
For each R in the edbs of P, $I(R) \subseteq P(I)(R)$.
Because $P(I)$ contains I.
Since $P(I)(R) \subseteq B(P,I)(R) = I(R)$
We conclude for each R in the edbs of P, $P(I)(R) = I(R)$.

The choice of minimal model

Closed world Assumption (CWA)
- Concerns the connection, the database and the world of models.
- A fact that is recorded in the database is considered to be true in the world.
- A fact not recorded in the database may also be true in the world (database may be incomplete).
- CWA assume that every fact recorded in the database is true and otherwise false (the database is complete. All true facts are recorded).
- The minimal model consists of all facts we know must be true in all possible world.
∴ the “right” model