Instructions: Answer all questions concisely.

1. Assume that \textit{dom} is a set of \(n \) elements and \(r \) is an instance of a binary relation schema \(R \) over \(\textit{dom} \times \textit{dom} \).
 - What is the largest possible size of \(r \)?
 - What is the largest possible result of the following query?
 - \(\text{Ans}(x, z) \leftarrow R(x, y), R(y, z) \).

2. Prove that the SPCU algebra is monotonic. That is, prove that the composition of SPCU operators is monotonic. (Hint: prove by induction.)

3. Let \(Q_{\text{min}} \) be a minimal conjunctive query. Show the following:
 - If \(Q \) is a conjunctive query and \(Q \equiv Q_{\text{min}} \), then every containment mapping \(h \) from \(Q \) to \(Q_{\text{min}} \) is such that for every subgoal \(S(x_1, \ldots, x_k) \) of \(Q_{\text{min}} \), \(S(h(y_1, \ldots, y_j)) = S(x_1, \ldots, x_k) \) for some subgoal \(S(y_1, \ldots, y_k) \) of \(Q \).

 (Hint: Prove by contradiction. Assume that there is a containment mapping \(h: Q \rightarrow Q_{\text{min}} \) such that for some subgoal \(S(x_1, \ldots, x_k) \) of \(Q_{\text{min}} \), none of the subgoals in \(Q \) maps to \(S(x_1, \ldots, x_k) \) under \(h \). Show how this will contradict the minimality of \(Q_{\text{min}} \).)