BOUNDARY CONSTRAINTS IN FORCE-DIRECTED GRAPH LAYOUT

Yani Zhang
INTRODUCTION

- **Graph Drawing**
 - addresses the problem of constructing geometric representation of graphs
 - application:
 - social network analysis
 - cartography
 - software visualization

Gephi render example. From http://gephi.org/tag/gsoc/
Introduction (Cont.)

- Graph Layout
 - Graph drawing \rightarrow graph layout
 - Force-directed approach
 - Physical model
 - Straight-line drawing
 - Physical objects subject to various forces
 - A local minimum energy configuration of the physical system
INTRODUCTION (CONT.)

- Properties
 - Symmetries
 - Planarity
 - Limited space

Graph Drawing acceptances and the Lombardi Spirograph
http://11011110.livejournal.com/201066.html

- A multi-objective optimization problem
Aesthetics

- Minimization of number of crossings, area of drawing ...
- Maximization of the symmetries displayed by the drawing ...

Graph Drawing acceptances and the Lombardi Spirograph
http://11011110.livejournal.com/201066.html
Introduction (Cont.)

- Constraints – Additional Input
 - Place a given vertex in the “center” of the drawing
 - Place a given subset of vertices “close together”
 - Draw a given path horizontally aligned from left to right (or vertically aligned from top to bottom)
 - Draw a given subgraph with a predefined “shape”

- Constraint satisfaction in interactive applications
 - Update the graph
 - Preserve the metal map
INTRODUCTION (CONT.)

- Problem to solve is
 - Boundary Constraints on Graph Layout
 - Allow users to define arbitrary boundary on graph layout
 - Develop an algorithm that represent boundary as constraints in the optimization problem
 - The algorithm should be fast and preserve the metal map
 - Visualize the process of graph layout
Motivation

- Not much relevant research:
 - Internal linked nodes as boundary
 - Outside/environment forces as boundary
 - Clutter boundaries
 - Overall boundary

A 400 node lattice with the outside nodes constrained to a circle

A large biological pathway with non-overlapping convex hull boundaries around clusters
Motivation (Cont.)

- Practical Applications:
 - Furniture layout
 - Automatic chart layout

RELATED WORK

- **Fruchterman and Reingold (1991)**
 - use a complex system of force-directed algorithms
 - control the size of the drawing by assuming that the boundary of the prespecified drawing region acts as a “wall”

- **Ryall Kathy and Joe Marks (1997)**
 - build an interactive constraint-based editor
 - feature a vocabulary of visual organization constraints for graph drawing, such as alignment, zone separation
Related Work (Cont.)

- **Tim Dwyer (2009)**
 - constraint-satisfaction method based on position-based dynamics
 - support a much more powerful class of constraint: inequalities or equalities over the Euclidean distance between nodes
PROPOSED RESEARCH DIRECTION

- The force-directed approach
 - Use a physical model where the vertices and edges of the graph are viewed as objects subject to various forces
 - Line between two nodes as edges, edges linked together as boundaries
 - Treat boundary as repelling forces
 - Recalculating positions of nodes

- Future work
 - Speed?
 - other approach
REFERENCE