(Binary) Classification: Learning a Class from labeled Examples

- "Things" represented by a feature vector \mathbf{x} and a label r (also called y), often $r \in \{1,0\}$ or $\{+,-\}$
- Domain D is set of all possible feature vectors
- A Hypothesis (sometimes called a Concept) partitions the Domain into + and - regions
 - or just the + region,

Assumption: iid Examples

- Distribution of things and measurements defines some unknown (but fixed) $P(\mathbf{x})$ on domain D
- Target concept C gives the "correct" labels, $C_{\mathbf{x}}$, as a function of the features, \mathbf{x}
- Find an h in \mathcal{H} from examples that is "close" to C
 - A loss function $l(r, r')$ measures error of predictions, usually $l(r, r') = 0$ if $r = r'$ and $l(r, r') = 1$ otherwise
 - Want to minimize $\int P(\mathbf{x}) l(C_{\mathbf{x}}, h(\mathbf{x}))$ -- probability of error for usual loss

Tasty Coffee example

- Objects are cups of coffee
- Measure strength and sugar
- Each measurement is a feature or attribute
- Other features? (cream, temperature, roast)
- Features numeric (precision? Accuracy?)
- Label (or class) is "+" (tasty) or "-" (not)
- Example is (\mathbf{x}, y) pair, \mathbf{x} in \mathbb{R}^2, $y \in \{+,-\}$

More Terminology

- Domain: set of all possible \mathbf{x} vectors
- Concept: a boolean function on domain, a mapping from \mathbf{x}'s to "+1" and "-1", or "T" and "F"; or "+" and "-", or a subset of domain
- Target: the concept to be learned
- Hypothesis class/space: is the set of hypotheses (concepts) that can be output by a given learning algorithm
- Strength and sugar measured 0 to 10
- Domain has 121 different instances
- How to predict from these examples?

```
<table>
<thead>
<tr>
<th>strength</th>
<th>sugar</th>
<th>label</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>-</td>
</tr>
</tbody>
</table>
```

Version space: all concepts in hypotheses space consistent with training set.
- If hypoth. Space is all concepts, then version space evenly split on every unseen instance
- Need inductive bias (smaller hypothesis space), otherwise generalization is hopeless
- Assume "tasty coffee" is a rectangle in \mathbb{R}^2
- Rectangles in \mathcal{H} are concepts C for which there exists so that $C(x) = 1$ iff $c_1 \leq x_1 \leq c_2$

Hypothesis class \mathcal{H} of rectangles

$h(0) = 1$ if h classifies x as positive
0 if h classifies x as negative

```
Hypothesis class $\mathcal{H}$ of rectangles
```

```
Error of $h$ on data $X$
$E(h|X) = \sum_{x \in X} h(x) \cdot r(x)
```

Bad use of "()"
Key interplay

- Underlying pattern being learned
- Features available
- Hypothesis space
- Number of examples available

The trick is finding the right mix, but...

Triple Trade-Off

- There is a trade-off between three factors (Dietterich, 2003):
 - Complexity of \mathcal{H}, $c(\mathcal{H})$
 - Training set size, N
 - Generalization error, E, on new data

 - As N^1, E_1
 - As $c(\mathcal{H})$, first E_1 and then E_1

Model Selection & Generalization

- Learning is an ill-posed problem; data is not sufficient to find a unique solution
- The need for inductive bias, assumptions about \mathcal{H}
- Generalization: How well a model performs on new data - What we are really interested in!
- Overfitting: \mathcal{H} more complex than C or f
- Underfitting: \mathcal{H} less complex than C or f

Example

- Not a rectangle in x_1, x_2
- How to make it a rectangle?

- It is a rectangle in three dimensions: x_1, x_2, and $x_1^* x_2$

- Not a rectangle in x_1, x_2
- How to make it a rectangle?

- It is a rectangle in three dimensions: x_1, x_2, and $x_1^* x_2$
VC Dimension - Shattering

- \(N \) points can be labeled in \(2^N \) ways as +/-.
- \(H \) shatters a set if:
 - for each labeling of the set there is an \(h \in H \) consistent with the labeling
- \(\text{VC}(H) = \text{size of a largest shattered set} \)

An axis-aligned rectangle shatters 4 points only!

VC Dimension

- Vapnik-Chervonenkis dimension is a measure of hypothesis space capacity
- VC-dim of rectangles in the plane is 4
- PAC (Probably approximately correct) bounds: if target concept in hypothesis class then any hypothesis in class consistent with \(O(\text{VC-dim} \ln 1/\alpha / \alpha) \) random examples usually has error \(\leq \alpha \)

Noise

- Data not always perfect
- Attribute noise
- Label noise
- Noise can model hypothesis space approximations

Domain

Multiple Classes, \(C_i \)

\(i = 1, \ldots, K \)

\[X = [x_1, \ldots, x_N] \]

Train hypotheses \(h(x)/i, i = 1, \ldots, K \)

\[h(x)/i = \begin{cases} 1 & \text{if } x \in C_i \cap \cap_{j \neq i} \overline{C_j} \\ 0 & \text{otherwise} \end{cases} \]
Regression

\[X = \{ x' \}_t^N \]
\[x' \in \mathbb{R}^d \]
\[x' = f(x) + \epsilon \]
\[E(\theta|X) = \frac{1}{N} \sum_{t=1}^N (y'_t - [Wx'_t + b])^2 \]

Estimating Errors

- To estimate generalization error, we need data unseen during training. We split the data as:
 - Training set (50%)
 - Validation set (25%) (is training good?)
 - Test (publication) set (25%)
- Resampling when there is few data (cross validation)

Supervised Learning as parameter estimation

Model (hypothesis class):
\[g(x|\theta) \]
Loss function:
\[E(\theta|X) = \sum_{t} L(\hat{y}_t, y_t) \]
Optimization procedure:
\[\theta^* = \arg \min_{\theta} E(\theta|X) \]

Why Reduce Dimensionality?
- Reduces time complexity: Less computation
- Reduces space complexity: Less parameters
- Saves the cost of observing the feature
- Simpler models are more robust on small datasets
- More interpretable; simpler explanation
- Data visualization (structure, groups, outliers, etc) if plotted in 2 or 3 dimensions

Feature Selection vs Extraction

- **Feature selection**: Choosing \(k \) of \(d \) important features, ignoring the remaining \(d - k \)
 Subset selection algorithms
- **Feature extraction**: Project the original \(x_i, i = 1,...,d \) dimensions to new \(k \) dimensions, \(z_j, j = 1,...,k \)
 - Principal components analysis (PCA)
 - Linear discriminant analysis (LDA)
 - Factor analysis (FA)
 (also clustering-based approaches)
Feature Ranking (see Guyon-Elisseeff)

- Find features with a high “score”:
 - Correlation with labels (regression)
 - Predictive power of attribute (1-attribute classifier)
 - Mutual information between labels and targets

- Relatively quick and simple

Subset Selection

- There are 2^d subsets of d features
- Forward search: Add the best feature at each step
 - Set of features F initially Ø.
 - At each iteration, find the best new feature
 - $f = \arg\min_i E(F \cup x_i)$
 - Add x_f to F if $E(F \cup x_f) < E(F)$
 - This is Hill-climbing $O(d^2)$ runs of algorithm ($O(dk)$ to pick k features)
- Backward search: Start with all features and remove one at a time, if possible.
- Floating search (Add k, remove l)