Linear Discriminant Analysis
(see Alpaydin ch. 5 and section 6.6)

- Key idea: For each class \(y \):
 - Estimate \(P(x \mid y) \) with a Gaussian
 (using shared covariance matrix)
 - Estimate prior \(P(y) \) as fraction of
 training data with class \(y \)
- Predict the \(y \) maximizing \(P(y) \cdot P(x \mid y) \),
 Or maximizing \(\log(P(y)) + \log(P(x \mid y)) \)
- What is the hypothesis class?

Generative model:

- Hypothesis class associated with set of
 distributions (e.g. gaussians)
- Each hypothesis associates a
distribution on \(X \) with each class (or
label) (distributions may be restricted -
e.g. have same variance)
- Put "prior" \(P(y) \) on classes/labels
- To generate sample:
 - Repeat:
 - Pick label \(y \) from \(P(y) \)
 - Pick features \(x \) from \(P(x \mid y) \)

Exercise:

- Implement LDA for two classes and train on
your iris2.arff data
- Compare the classifier you get from the one
from Weka by:
 - Select "classify" tab, then "choose" button, then
 "Classification via Regression" inside the "meta" folder. Click on the ClassificationViaRegression
 (beside the choose button), in the pop-up box click
 choose and select "linear regression" from the
 functions folder. Click on "linear regression" (next to
 the choose button in the pop-up window) and change
 "attribute selection" to "no selection", "eliminate co-
 linear" to "false" and set the "ridge" parameter to 0.

Decision boundary
For 2-classes 0 and 1, predict on \(x \)
- Predict \(y = 1 \) if \(P(1)P(x \mid 1) > P(0)P(x \mid 0) \)
- Predict \(y = 0 \) if \(P(1)P(x \mid 1) < P(0)P(x \mid 0) \)
- Decision Boundary where
 \(P(1)P(x \mid 1) = P(0)P(x \mid 0) \)
- When is \(P(1)P(x \mid 1) = P(0)P(x \mid 0) \)?

\[
P(1)P(x \mid 1) = P(0)P(x \mid 0)
\]

\[
\log \left(\frac{G_1(x)}{G_0(x)} \right) = \frac{P(0)}{P(1)}
\]

\[
e^{-\frac{1}{2} y^T \Sigma^{-1} y}
\]

\[
e^{-\frac{1}{2} x^T \Sigma^{-1} x}
\]

\[
\frac{1}{2} (\text{stuff } 1 - \text{stuff } 2) = \ln \left(\frac{P(0)}{P(1)} \right)
\]
(Assume same Σ)

stuff 1 = $(x - \mu_1)^T \Sigma^{-1} (x - \mu_1)$

stuff 1 = $x^T \Sigma^{-1} x + x^T \Sigma^{-1} \mu_1 - \mu_1^T \Sigma^{-1} x - \mu_1^T \Sigma^{-1} \mu_1$

stuff 2 = $x^T \Sigma^{-1} x + x^T \Sigma^{-1} \mu_2 - \mu_2^T \Sigma^{-1} x - \mu_2^T \Sigma^{-1} \mu_2$

stuff 1 - stuff 2 = $x^T \Sigma^{-1} (\mu_1 - \mu_2) - (\mu_1^T - \mu_2^T) \Sigma^{-1} x - \mu_1^T \Sigma^{-1} \mu_1 + \mu_2^T \Sigma^{-1} \mu_2$

What this means is:

stuff 1 - stuff 2 = $w^T x + c$

and decision boundary is a hyperplane.

Linear threshold classification

- Linear threshold unit: predicts 1 if $w^T x + w_0 \geq 0$

- LTU's can represent:
 - Conjunctions like $(x_1 \text{ and } x_2 \text{ and not } x_5)$
 - At least k of m functions like:
 - At-least-2-of $(x_1, x_3, \text{ not } x_4)$
- LTU's can not represent
 - XOR functions
 - Complex disjunctions like $(x_1 \text{ and } x_2)$ or $(x_3 \text{ and } x_4)$

LDA finds an informative projection

Other LTU algorithms:
- Perceptron algorithm
- Logistic regression
- Support vector machines