Instance Based Learning

AKA: nearest neighbor methods, non-parametric, lazy, memory-based, or case-based learning

Non-parametric techniques

• Do not fit a model (as do LTU, decision tree, etc)
• Includes Nearest Neighbor and density estimation methods
• Variable sized hypothesis space, like Decision trees
• “lazy” Hypothesis (no gradient descent, optimization, or search) (under “lazy” in Weka)

Nearest Neighbor Algorithm

• Instances ($x_i's$) are vector of real
• Store the n training examples $(x_1, y_1), \ldots, (x_n, y_n)$
• To predict on new x, find x_i closest to x and predict with y_i
• Comments:
 – Not just simple table lookup
 – Can avoid $\sqrt{\text{distance}}$ by minimizing squared distance

NN Decision Boundaries

• Voronoi diagram, very flexible, gets more complicated with additional points

Nearest Neighbor Applications

• Astronomy (classifying objects)
• Medicine - diagnosis
• Object detection
• Character recognition (shape matching)
• Many others (basic theory from 1950’s and 60’s)

Distance metric important

• Consider expensive houses with features:
 – Number of bedrooms (1 to 5+)
 – Lot size in acres (1/6 to 1/2 plus tail)
 – House square feet (1200 to 3000+)
• Difference in square feet dominates
• Irrelevant attributes (e.g. “how far away was owner born?”) add variability
• Correlated attributes also bad
Irrelevant attribute example

• Let \(x_1 \in [0, 1] \) determine class:
 \(y = 1 \) iff \(x_1 > 0.3 \)
• Consider predicting on \((0, 0)\) given data
 \((0.1, x_2)\) labeled 0
 \((0.5, x_2')\) labeled 1
 where \(x_2, x_2' \) random draws from \([0,1]\)
• Chance of error \(-15\%\)!

Some tricks

• Rescale attributes to mean 0 variance 1
• Use \(w_j \) on \(j^{th} \) component:
 \[\text{Dist}(x, x') = \sum_j w_j (x_j - x_j')^2 \]
 \[w_j = I(x_j, y) \]
 (“mutual information”)
• Mahalanobis Distance (covariance \(\Sigma \), like LDA)
 \[\text{Dist}(x,x') = (x-x')^T \Sigma^{-1} (x-x') \]

Curse of Dimensionality

• As number of attributes \((d)\) goes up so does “volume”
• Consider 1000 training points in \([0,1]^d\) where does each point predict?
 – When \(d=1 \), interval per point \(-0.001\)
 – When \(d=2 \), area per point \(-0.001\), length of side about 0.032
 – When \(d=10 \), volume per point \(-0.001\), length of side \(-0.5\)
• Need exponentially many points \((in d)\) to get good coverage

K-d trees

• Greatly speed up finding nearest neighbor
• Like binary search tree, but organized around dimensions
• Each node tests single dimension against threshold (median)
• Can use highest variance dimension or cycle through dimensions
• Growing a good K-d tree can be expensive

Noise can cause problems

\[+ + \ldots + - - \]
\[+ - + \]
\[+ - \]

Noise example

• Assume that “true” labels always 1, but noise randomly corrupts labels 10% of the time (making them 0)
• Bayes optimal: predict 1, test error is 10%
• Nearest Neighbor: use closest training point,
 – 90% of the time predict 1, 10% of these predictions wrong
 – 10% of the time predict 0, 90% of these predictions wrong
• Overall NN wrong 18% of the time
K-nearest neighbor

- Algorithm: Find the closest k points and predict with their majority vote
- K-NN is Bayes optimal in limit as k and training set size go to \(\infty \) (known since 1960’s)

Edited NN

- Key Idea: Reduce memory and computation by only storing “important” points
- Heuristic:
 - Discard those points correctly predicted by others (or take incorrectly predicted points)
 - Remaining points concentrated on the decision boundary
- Finding a smallest subset of points correctly labeling others is NP-complete.

Instance Based Density Estimation

Histogram method:
- Break instance space \(X \) into bins
- Use sample falling into bin to estimate probabilities

- Histogram method is parametric, not instance based
- Has edge effects

Smother method: Add slice of probability to area centered at example rather than to predetermined bin

- In general, have a Kernel function that tells how probability added (see Duda and Hart)
 - Gaussians common
 - Also called Parzon Windows
 - Often a “width” parameter controls smoothing (like \(\sigma \) in Gaussians)
Final points

Can use smoothed nearest neighbor also
(whole sample votes on predictions with
weights depending on distance to new point),
but may be computationally expensive
Can fix k and use distance to kth nearest to
estimate density
Might use cross validation to estimate
smoothing parameter
Can use density estimation for P(x | class) and
then predict class labels using Bayes’ rule

Nonparametric Regression

• Aka smoothing models
• Regressogram
\[\hat{g}(x) = \frac{\sum_{i=1}^{N} b(x_i, x') r_i}{\sum_{i=1}^{N} b(x_i, x')} \]
where
\[b(x_i, x') = \begin{cases} 1 & \text{if } x' \text{ is in the same bin with } x \\ 0 & \text{otherwise} \end{cases} \]

Running Mean/Kernel
Smotherer

• Running mean smoother
\[\hat{g}(x) = \frac{\sum_{i=1}^{N} w(x_i - x') r_i}{\sum_{i=1}^{N} w(x_i - x')} \]
where
\[w(x) = \begin{cases} 1 & \text{if } |x| < 1 \\ 0 & \text{otherwise} \end{cases} \]
• Running line smoother (locally linear)
• Kernel smoother
\[\hat{g}(x) = \frac{\sum_{i=1}^{N} K\left(\frac{x - x'}{h}\right) r_i}{\sum_{i=1}^{N} K\left(\frac{x - x'}{h}\right)} \]
where \(K(\cdot) \) is Gaussian
• Additive models (Hastie and Tibshirani, 1990)
How to Choose k or h?

• When k or h is small, single instances matter; bias is small, variance is large (undersmoothing): High complexity

• As k or h increases, we average over more instances and variance decreases but bias increases (oversmoothing): Low complexity

• Cross-validation is used to fine-tune k or h.

Tree and NN comparison

<table>
<thead>
<tr>
<th></th>
<th>Decision Trees</th>
<th>Nearest Neighbor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>Trees - flexible</td>
<td>Instance based, flexible</td>
</tr>
<tr>
<td>Data</td>
<td>mixed</td>
<td>Usually Numeric</td>
</tr>
<tr>
<td>Interpretable</td>
<td>If small tree</td>
<td>Only in 1 or 2 dimensions</td>
</tr>
<tr>
<td>Missing values</td>
<td>Tricks</td>
<td>Training set no, but ok for test points</td>
</tr>
<tr>
<td>Noise/outliers</td>
<td>Good with pruning</td>
<td>Good with knn</td>
</tr>
</tbody>
</table>

Tree and KNN Robustness

<table>
<thead>
<tr>
<th></th>
<th>Decision tree</th>
<th>Nearest neighbor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monotone transformation</td>
<td>Great</td>
<td>Very bad</td>
</tr>
<tr>
<td>Irrelevant features</td>
<td>Fair</td>
<td>Very bad</td>
</tr>
<tr>
<td>Computation time</td>
<td>OK</td>
<td>Lazy - expensive</td>
</tr>
</tbody>
</table>