LECTURE 9

EXPERT SETTING

SO FAR:

\[t = 1, \ldots, \]

\[
\text{Pick expert } i \text{ according to prob. vector } W_t, i \quad \# \text{of experts}
\]

\[
\text{Receive loss vector } L_t = [0, 1]^n
\]

\[
\text{Incur loss } L_t, i
\]

\[
\text{Or expected loss } W_t \cdot L_t
\]

\[
W_t, i \sim w_t, i e^{-\eta L_t, i}
\]

\[
\text{Bound: } \sum_{t=1}^{\eta} W_t \cdot L_t \leq \frac{-\sum_{t=1}^{\eta} L_t, i}{1 - \beta}
\]

\[
\text{Tuning}
\]

\[
\text{Loss of all } \leq \text{Loss of best}
\]

\[
\frac{1}{2} \text{Loss of best} \ln n + \ln n
\]

TODAY: SPECIFIC LOSS FUNCTIONS THAT GIVE BOUND OF THE FORM

\[
\text{Loss of Alg} - \text{Loss of Best} = O(\ln n)
\]

LATER: OPTIMAL ALG.
MORE ON EXPERT SETTING WITH DIFFERENT LOSSES

<table>
<thead>
<tr>
<th>TRIALS</th>
<th>$x_{t,1}$</th>
<th>$x_{t,2}$</th>
<th>$x_{t,n}$</th>
<th>PREDICTION</th>
<th>TRUE LABEL</th>
<th>LOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_1</td>
<td>E_2</td>
<td>E_n</td>
<td></td>
<td>\hat{y}_t</td>
<td>y_t</td>
<td>$L(y_t, \hat{y}_t)$</td>
</tr>
</tbody>
</table>

TODAY: $\hat{y}_t, y_t \in [0,1]$

SQUARE LOSS

$$L(y, \hat{y}) = (y - \hat{y})^2$$

RELATIVE ENTROPY LOSS

$$L(y, \hat{y}) = (1-y) \ln \frac{1-y}{1-\hat{y}} + y \ln \frac{y}{\hat{y}}$$

SPECIAL CASE

$y, \hat{y} \in [0,1]$
LABEL OF A COIN
\$\hat{y}\$ IS PROBABILITY OF COIN

$$\begin{align*}
L(1, \hat{y}) &= -\ln(\hat{y}) \\
L(0, \hat{y}) &= -\ln(1-\hat{y})
\end{align*}$$

CALLED LOG LOSS WHEN $y, \hat{y} \in [0,1]$

HELLINGER LOSS

$$L(y, \hat{y}) = \frac{1}{2} \left((\sqrt{1-y} - \sqrt{1-\hat{y}})^2 - (\sqrt{y} - \sqrt{\hat{y}})^2 \right)$$

ABSOLUTE LOSS

$$L(y, \hat{y}) = |y - \hat{y}|$$

"UNUSUAL LOSS"

SQUARE ROOT TERM NECESSARY
\[S = (\bar{x}_1, y_1), ..., (\bar{x}_t, y_t), ..., (\bar{x}_T, y_T) \]

SEQUENCE OF EXAMPLES

WANT BOUNDS OF THE FORM

\[L_A(S) \leq L_{E_i}(S) + \alpha L \ln n \]

\[\text{# OF EXPERTS} \]

\[\frac{1}{T} \sum_{t=1}^{T} L(y_t, \hat{y}_t) \]

\[\text{DEPENDS ON LOSS L} \]

\[\frac{1}{T} \sum_{t=1}^{T} L(y_t, x_t, i) \]

\[\text{UNNORMALIZED WEIGHTS} \]

\[w_{t,i} = w_{t-1,i} e^{-\eta \sum_{n=1}^{T} L(y_t, x_t, i)} \]

\[\text{FOR SIMPLEST CASE} \quad \eta = \frac{1}{2L} \quad \text{(NOT POSSIBLE FOR ABSOLUTE LOSS)} \]

\[v_{t,i} = \frac{w_{t,i}}{\sum_{j=1}^{n} w_{t,j}} \]

\[\text{NORMALIZED WEIGHTS} \]

Initialize the weights to some probability vector \(v_{1,i} \); set the parameter \(c \) to some positive value.

Repeat for \(t = 1, \ldots, T \):
1. Receive the instance \(x_t \).
2. Output the prediction \(\hat{y}_t = v_t \cdot x_t \). \[\text{SPECIAL FORM OF PREDICTION} \]
3. Receive the outcome \(y_t \).
4. Update the weights by the loss update defined as follows:

\[v_{t+1,i} = v_{t,i} \exp(-L(y_t, x_{t,i})/c)/\text{norm}_t \]

where

\[\text{norm}_t = \sum_{i=1}^{n} v_{t,i} \exp(-L(y_t, x_{t,i})/c) \, . \]

Fig. 1. The Weighted Average Algorithm (WAA) for combining expert predictions
How can we prove bounds that hold for arbitrary sequences of \((x_t, y_t) \in \{0,1\}^n \times \{0,1\}\)

\[P_t = -c \ln W_t \]
\[W_t = \sum_i w_{t,i} \]

Potential

Key Inequality We Need

\[L(y_t, \tilde{y}_t) \leq P_{t+1} - P_t \]
Whenever \((x_t, y_t) \in \{0,1\}^n \times \{0,1\}\)
\[\tilde{w}_t \in \{0,\ldots,\infty\}^n \]

Assume we have inequality

By summing over trials we get

\[L_A(s) = \frac{1}{T} \sum_{t=1}^{T} L(y_t, \tilde{y}_t) \leq \frac{1}{T} \sum_{t=1}^{T} P_{t+1} - P_t \]

\[= P_{T+1} - P_1 \]
\[L_A(s) \leq P_{T+1} - P_I \]
\[\leq -\alpha \ln \sum_{i=1}^{n} w_{i} e^{-\frac{1}{2} L E_i(s)} + \alpha \ln \frac{\mathcal{W}}{2} \]
\[\leq -\alpha \ln \frac{1}{n} e^{-\frac{1}{2} L E_i(s)} \]
\[= L E_i(s) + \alpha \ln n \]

Proof of key inequality:

\[L(y_t, v_t, x_t) \leq -\alpha \ln \sum_{i=1}^{n} v_{t,i} e^{-\frac{1}{2} L(y_t, x_{t,i})} \]

\[\iff \quad e^{\frac{1}{2} L(y_t, v_t, x_t)} \geq \sum_{i=1}^{n} v_{t,i} e^{-\frac{1}{2} L(y_t, x_{t,i})} \]

With \(f_y(x) = e^{-\frac{1}{2} L(y, x)} \)

\[\iff \quad f_{y_t}(\sum v_{t,i} x_{t,i}) \geq \sum v_{t,i} f_{y_t}(x_{t,i}) \]

SUFFICES TO SHOW THAT \(f_y(x) \) CONCAVE
Digression:

Jensen's Inequality

Definition: A function $f(x)$ is said to be **convex** over an interval (a, b) if for every $x_1, x_2 \in (a, b)$ and $0 \leq \lambda \leq 1$,

$$f(\lambda x_1 + (1 - \lambda)x_2) \leq \lambda f(x_1) + (1 - \lambda)f(x_2).$$
(2.72)

A function f is said to be **strictly convex** if equality holds only if $\lambda = 0$ or $\lambda = 1$.

Definition: A function f is **concave** if $-f$ is convex.

![Graphs of Convex and Concave Functions](image)

Convex

- $f(x) = x^2$
- $f(x) = e^x$

Concave

- $f(x) = \log x$
- $f(x) = \sqrt{x}, x \geq 0$
\[x_0 = \lambda x_1 + (1-\lambda) x_2 \]

\[\forall \ 0 \leq \lambda \leq 1 : \ f(\lambda x_1 - (1-\lambda) x_2) \leq \lambda f(x_1) + (1-\lambda) f(x_2) \]

For whole line \(\mathbb{R} \)

For segment \(x_1 \leq r \leq x_2 \)
Theorem 2.6.1: If the function f has a second derivative which is non-negative (positive) everywhere, then the function is convex (strictly convex).

Proof: We use the Taylor series expansion of the function around x_0, i.e.,

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x^*)}{2}(x - x_0)^2 \tag{2.73}$$

where x^* lies between x_0 and x. By hypothesis, $f''(x^*) \geq 0$, and thus the last term is always non-negative for all x.

$$f(x) \geq f(x_0) + f'(x_0)(x - x_0)$$

We let $x_0 = \lambda x_1 + (1 - \lambda)x_2$ and take $x = x_1$ to obtain

$$f(x_1) \geq f(x_0) + f'(x_0)[(1 - \lambda)(x_1 - x_2)]. \tag{2.74}$$

Similarly, taking $x = x_2$, we obtain

$$f(x_2) \geq f(x_0) + f'(x_0)[\lambda(x_2 - x_1)]. \tag{2.75}$$

Multiplying (2.74) by λ and (2.75) by $1 - \lambda$ and adding, we obtain (2.72). The proof for strict convexity proceeds along the same lines. \Box
Let E denote expectation. Thus $EX = \Sigma_{x \in x} p(x)x$ in the discrete case and $EX = \int xf(x) \, dx$ in the continuous case.

The next inequality is one of the most widely used in mathematics and one that underlies many of the basic results in information theory.

Theorem 2.6.2 (Jensen's inequality): If f is a convex function and X is a random variable, then

$$Ef(X) \geq f(EX).$$

Moreover, if f is strictly convex, then equality in (2.76) implies that $X = EX$ with probability 1, i.e., X is a constant.

Proof: We prove this for discrete distributions by induction on the number of mass points. The proof of conditions for equality when f is strictly convex will be left to the reader.

For a two mass point distribution, the inequality becomes

$$p_1 f(x_1) + p_2 f(x_2) \geq f(p_1 x_1 + p_2 x_2),$$

which follows directly from the definition of convex functions. Suppose the theorem is true for distributions with $k - 1$ mass points. Then writing $p'_i = p_i/(1 - p_k)$ for $i = 1, 2, \ldots, k - 1$, we have

$$\sum_{i=1}^{k} p_i f(x_i) = p_k f(x_k) + (1 - p_k) \sum_{i=1}^{k-1} p'_i f(x_i)$$

\[\overset{\text{INDUCTION}}{\geq} p_k f(x_k) + (1 - p_k) f \left(\sum_{i=1}^{k-1} p'_i x_i \right) \]

\[\geq f \left(p_k x_k + (1 - p_k) \sum_{i=1}^{k-1} p'_i x_i \right) \]

\[= f \left(\sum_{i=1}^{k} p_i x_i \right) \]

Continuous Case proven using continuity arguments! \[\Box \]
RETURN TO PROOF

\[f_y(x) = e^{-\frac{x}{\xi} L_y(x)} \]

NEED TO SHOW THAT \(f_y(x) \) CONCAVE

\[f'_y(x) = -\frac{1}{\xi} L'_y(x) e^{-\frac{x}{\xi} L_y(x)} \]

\[f''_y(x) = \left(\left(\frac{1}{\xi} L'_y(x) \right)^2 - \frac{1}{\xi} L''_y(x) \right) e^{-\frac{x}{\xi} L_y(x)} \geq 0 \]

THEN

\[f''_y(x) \leq 0 \quad \text{IFF} \quad c \geq \frac{(L'_y(x))^2}{L''_y(x)} \]

CONCAVE

\[\overline{c_L} := \sup_{0 < y, x < 1} \frac{(L'_y(x))^2}{L''_y(x)} \]

\[L_y(x) = (y - x)^2 \quad L'_y(x) = 2(x - y) \quad L''_y(x) = 2 \]

LABEL EXPERT

\[\overline{c_L} = \sup_{0 < y, x < 1} \frac{4(y - x)^2}{2} = 2 \]
FANLY PRED. $\hat{y}_t = \bar{y}_t \cdot x_t$

<table>
<thead>
<tr>
<th>L</th>
<th>CL</th>
<th>\hat{C}_L</th>
</tr>
</thead>
<tbody>
<tr>
<td>REL. ENTR.</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>SQUARE</td>
<td>$\frac{1}{2}$</td>
<td>2</td>
</tr>
<tr>
<td>HELLINGER</td>
<td>0.71</td>
<td>1</td>
</tr>
</tbody>
</table>

OUTLINE OF HOW TO GET BETTER CONSTANT C_L^2

$\Delta(y) = P_t - P_{t+1}$

$= -c \ln W_{t+1} + c \ln W_t$

$= -c \ln \sum_{i=1}^{N} e^{-\frac{1}{c} L(y, x_{t,i})}$

C_L IS MAX c S.T.
THERE ALWAYS EXIST \hat{y}_t FOR WHICH

$L(0, \hat{y}_t) \leq \Delta(0)$
$L(1, \hat{y}_t) \leq \Delta(1)$

THUS KEY INEQUALITY HOLDS FOR $y \in [0, 1]^3$

NOW SHOW THAT KEY INEQUALITY HOLDS FOR WHOLE INTERVAL $y \in [0, 1]^3$
\[P_t = -\frac{1}{1-\beta} \ln W_t \]

\[= -\frac{1}{1-\beta} \ln \sum_i W_{t,i} e^{-\frac{1}{2} \gamma (y_{t,i} - x_{t,i})} \]

\[\text{NOT INVERSES} \]

KEY INEQ.

\[|y_t - \bar{y}_t| \leq P_{t+1} - P_t \]

\[= -\frac{1}{1-\beta} \ln W_{t+1} e^{-\frac{1}{2} \gamma (y_{t+1} - x_{t+1})} \]

\[\frac{1}{T} \sum_{t=1}^{T} |y_t - \bar{y}_t| \leq P_{T+1} - P_1 \]

\[\leq \frac{\ln \frac{1}{\beta}}{1-\beta} \sum_{t=1}^{T} |y_{t} - x_{t,i}| + \frac{\ln n}{1-\beta} \]

BOUND FOR WMC WMR ALG.

DISCRETE LOSS ALSO SPECIAL

WM ALG.
WHAT HAVE WE LEARNED?

- AMORTIZED ANALYSIS FOR PROVING RELATIVE LOSS BOUNDS

- POTENTIAL

- RELATIVE ENTROPY AS MEASURE OF PROGRESS

- MOTIVATION OF LOSS UPDATE

\[
\overline{w}_{t+1} = \min_{\sum w_i = 1} \left(\Delta(\overline{w}, \overline{w}_t) + \eta \sum_{t} \overline{L}_{x_t, \overline{w}} \right)
\]

\[
w_{t+1, i} = \frac{w_{t, i} e^{-\eta \overline{L}_{x_t, i}}}{2t}
\]

\[
U_t(w_{t+1}) = p_{t+1} = -\ln \sum w_{t+1, i} e^{-\eta \overline{L}_{x_t, i}}
\]

- POTENTIAL

NEXT:

- REVIEW OF CONDITIONAL PROBABILITIES

- HOW DOES BAYESIAN ANALYSIS FIT INTO THIS?

- PROJECTION METHODS
PROBABILITY THEORY

FINITE SET S OF ELEMENTARY EVENTS

$S = \{(1, W), (2, W), (3, W), (4, W)\}$

PROBABILITY DISTRIBUTION

$P: S \rightarrow [0, 1]$
- $P(s_i) \geq 0$
- $\sum_i P(s_i) = 1$

- EVENT A IS ANY SUBSET OF S

$P(A) = \sum_{s_i \in A} P(s_i)$

SUM OVER ELEMENTARY EVENTS IN A

- AXIOMS:
 - $P(S) = 1$
 - $P(A \cup B) = P(A) + P(B)$
 \[\text{DISJOINT UNION} \]
 - $P(A \cup B) = P(A) + P(B) - P(A \cap B)$
A ball is selected from an urn containing two black balls, numbered 1 and 2, and two white balls, numbered 3 and 4. The number and color of the ball is noted, so the sample space is \{(1, b), (2, b), (3, w), (4, w)\}. Assuming that the four outcomes are equally likely, find \(P[A \mid B]\) and \(P[A \mid C]\), where \(A, B,\) and \(C\) are the following events:

- \(A = \{(1, b), (2, b)\}\), "black ball selected,"
- \(B = \{(2, b), (4, w)\}\), "even-numbered ball selected," and
- \(C = \{(3, w), (4, w)\}\), "number of ball is greater than 2."

\[
P(A \cap B) = P(\{(2, b)\}) = .25
\]
\[
P(A \cap C) = P(\emptyset) = 0
\]
\[
P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{.25}{.5} = .5 = P(A)
\]
\[
P(A \mid C) = \frac{P(A \cap C)}{P(C)} = \frac{0}{.5} = 0 \neq P(A)
\]
In the first case, knowledge of B did not alter the probability of A. In the second case, knowledge of C implied that A had not occurred.

If we multiply both sides of the definition of $P(A \mid B)$ by $P(B)$ we obtain

$$P(A \cap B) = P(A \mid B)P(B). \quad (2.25a)$$

Similarly we also have that

$$P(A \cap B) = P(B \mid A)P(A). \quad (2.25b)$$

INDEPENDENCE OF EVENTS

If knowledge of the occurrence of an event B does not alter the probability of some other event A, then it would be natural to say that event A is independent of B. In terms of probabilities this situation occurs when

$$P(A) = P(A \mid B) = \frac{P(A \cap B)}{P(B)}.$$

The above equation has the problem that the right-hand side is not defined when $P(B) = 0$.

We will define two events A and B to be **independent** if

$$P(A \cap B) = P(A)P(B). \quad (2.28)$$

Equation (2.28) then implies both

$$P(A \mid B) = P(A) \quad (2.29a)$$

and

$$P(B \mid A) = P(B) \quad (2.29b)$$

Note also that Eq. (2.29a) implies Eq. (2.28) when $P(B) \neq 0$ and Eq. (2.29b) implies Eq. (2.28) when $P(A) \neq 0$.

$A = \{(1, b), (2, b)\}$, "black ball selected";
$B = \{(2, b), (4, w)\}$, "even-numbered ball selected"; and
$C = \{(3, w), (4, w)\}$, "number of ball is greater than 2."

Are events A and B independent? Are events A and C independent?
First, consider events A and B. The probabilities required by Eq. (2.28)

$$P[A] = P[B] = \frac{1}{2},$$

and

$$P[A \cap B] = P[\{(2, b)\}] = \frac{1}{4}.$$

Thus

$$P[A \cap B] = \frac{1}{4} = P[A]P[B],$$

and the events A and B are independent. Equation (2.29b) gives more insight into the meaning of independence:

$$P[A \mid B] = \frac{P[A \cap B]}{P[B]} = \frac{P[\{(2, b)\}]}{P[\{(2, b), (4, w)\}]} = \frac{1/4}{1/2} = \frac{1}{2},$$

$$P[A] = \frac{P[A]}{P[S]} = \frac{P[\{(1, b), (2, b)\}]}{P[\{(1, b), (2, b), (3, w), (4, w)\}]} = \frac{1/2}{1}.$$

These two equations imply that $P[A] = P[A \mid B]$ because the proportion of outcomes in S that lead to the occurrence of A is equal to the proportion of outcomes in B that lead to A. Thus knowledge of the occurrence of B does not alter the probability of the occurrence of A.

Events A and C are not independent since $P[A \cap C] = P[\emptyset] = 0$ so

$$P[A \mid C] = 0 \neq P[A] = .5.$$

In fact, A and C are mutually exclusive since $A \cap C = \emptyset$, so the occurrence of C implies that A has definitely not occurred. \blacksquare
Let B_1, B_2, \ldots, B_n be mutually exclusive events whose union equals the sample space S as shown in Fig. 2.14. We refer to these sets as a partition of S. Any event A can be represented as the union of mutually exclusive events in the following way:

$$A = A \cap S = A \cap (B_1 \cup B_2 \cup \cdots \cup B_n)$$
$$= (A \cap B_1) \cup (A \cap B_2) \cup \cdots \cup (A \cap B_n).$$

See Fig. 2.14. By Corollary 4, the probability of A is

$$P[A] = P[A \cap B_1] + P[A \cap B_2] + \cdots + P[A \cap B_n].$$

By applying Eq. (2.25a) to each of the terms on the right-hand side, we obtain the theorem on total probability:

$$P[A] = P[A \mid B_1]P[B_1] + P[A \mid B_2]P[B_2] + \cdots + P[A \mid B_n]P[B_n].$$

Knowledge of $P(A \mid B_i)$ and $P(B_i)$ lets us compute $P(A)$.
Bayes' Rule

Let B_1, B_2, \ldots, B_n be a partition of a sample space S. Suppose that event A occurs, what is the probability of event B_j? By the definition of conditional probability we have

$$P(B_j | A) = \frac{P(A \cap B_j)}{P(A)} = \frac{P(A | B_j)P(B_j)}{\sum_{k=1}^{n} P(A | B_k)P(B_k)} \tag{2.27}$$

where we used the theorem on total probability to replace $P(A)$. Equation (2.27) is called Bayes' rule.

$P(B_j)$ PRIOR PROBABILITIES

EXPERIMENT PERFORMED AND
A OCCURRED

$P(B_j | A)$ POSTERIOR PROBABILITIES
GIVEN ADDITIONAL INFORMATION
MODEL 2

1. ONE EXPERT E_i GENERATES THE LABELS y_1, y_2, \ldots, y_T
2. PRIOR PROBABILITY OF EXPERT E_i IS $P(E_i)$

$y \in Y$ FINITE

IMPORTANT SPECIAL CASE:

y_1, y_2, \ldots, y_T ARE GENERATED INDEPENDENTLY AT RANDOM ACCORDING TO $P(y_1|E_i)$

Thus $P(y_1, y_2, \ldots, y_T|E_i) = \prod_{t=1}^{T} P(y_t|E_i)$

FOR EXAMPLE: EXPERTS ARE COINS $Y = \{0, 1\}$

<table>
<thead>
<tr>
<th>E_1</th>
<th>E_2</th>
<th>E_3</th>
<th>E_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P(1</td>
<td>E_i)$</td>
<td>.1</td>
<td>.2</td>
</tr>
<tr>
<td>$P(E_i)$</td>
<td>.2</td>
<td>.4</td>
<td>.3</td>
</tr>
</tbody>
</table>

$Y = \{0, 1\}$, $\bar{y}_3 = (1, 1, 0)$

$P(E_i|\bar{y}_3) = \frac{P(\bar{y}_3|E_i)P(E_i)}{P(\bar{y}_3)} = \frac{P(111|E_i)^3 (1-P(111|E_i)) P(E_i)}{P(\bar{y}_3)}$

POSTERIOR

<table>
<thead>
<tr>
<th>E_1</th>
<th>E_2</th>
<th>E_3</th>
<th>E_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P(E_i</td>
<td>\bar{y}_3)$</td>
<td>.12.9</td>
<td>.22.8</td>
</tr>
<tr>
<td>~</td>
<td>1.8</td>
<td>128</td>
<td>384</td>
</tr>
</tbody>
</table>
Bayes Alg. Assumes Assumptions Are Correct and Predicts at Trial t with Distribution

\[P(y_t | \bar{y}_{t-1}) = \frac{P(y_t \cap \bar{y}_{t-1})}{P(\bar{y}_{t-1})} \]

where \(P(\bar{y}_0) = 1 \)

Called The Predictive Distribution

Log Loss at Trial t

Alg: \[- \log P(y_t | \bar{y}_{t-1}) \]

E_i: \[- \log P(y_t \cap E_i | \bar{y}_{t-1}) \rightarrow - \log P(y_t | E_i) \]

Total Log Loss of Alg:

\[\sum_{t=1}^{T} - \log P(y_t | \bar{y}_{t-1}) = \sum_{t=1}^{T} - \log \frac{P(y_t)}{P(\bar{y}_{t-1})} \]

= \[\sum_{t=1}^{T} \left(- \log P(y_t) + \log P(y_{t-1}) \right) \]

Telescoping

= \[- \log P(y_T) + \log P(y_0) \]

= \[- \log P(y_T) \]
TOTAL LOSS OF EXPERT E_i:

$$\frac{1}{T} \sum_{t=1}^{T} -\log P(y_t | \bar{y}_{t-1}, E_i)$$

$$= \sum_{t=1}^{T} -\log \frac{P(y_t \wedge \bar{y}_{t-1}, 1 | E_i)}{P(\bar{y}_{t-1}, 1 | E_i)}$$

$$= \sum_{t=1}^{T} -\log \frac{P(\bar{y}_t | E_i)}{P(\bar{y}_{t-1} | E_i)}$$

$$= -\log P(\bar{y}_t | E_i) - \left(-\log \frac{P(\bar{y}_0 | E_i)}{1} \right)$$

$$= -\log P(\bar{y}_t | E_i)$$

TOTAL LOSS OF ALG.

$$-\log P(\bar{y}_1) = -\log \sum_{i} P(\bar{y}_1 | E_i)$$

$$= -\log \sum_{i} P(E_i) P(\bar{y}_1 | E_i)$$

$$\leq -\log P(\bar{y}_1 | E_i) + \log \frac{1}{P(E_i)}$$

TOTAL LOSS OF i-TH EXPERT
HOW IS THIS RELATED TO THE CANONICAL EXPERTS ALG?

\[w_{t+1, i} = w_{t, i} e^{-\eta L_{t, i}} \quad \text{UNNORMALIZE WEIGHTS} \]

NOW \(\eta = 1 \), \(L_{t, i} = -\log p(y_t \mid E_i, Y_{t-1}) \)

SO \(e^{-\eta L_{t, i}} = p(y_t \mid E_i, Y_{t-1}) \)

\[w_{t+1, i} = w_{t, i} p(y_t \mid E_i, Y_{t-1}) \]

\[= w_{t, i} \prod_{q=1}^{t} \frac{p(y_q \mid E_i, Y_{q-1})}{p(E_i)} \]

\[= w_{t, i} \prod_{q=1}^{t} \frac{p(y_q \cap E_i)}{p(Y_{q-1} \cap E_i)} \]

\[= p(y_t \cap E_i) \]

NORMALIZED WEIGHTS

\[v_{t+1, i} = \frac{w_{t+1, i}}{\sum_{j} w_{t+1, j}} = \frac{p(y_t \cap E_i)}{\sum_{j} p(y_t \cap E_j)} = \frac{p(y_t \cap E_i)}{p(y_t)} = p(E_i \mid y_t) \]

\[\text{POSTERIOR} \]

ALSO:

\[v_{t+1, i} = \frac{w_{t, i} p(y_t \mid E_i, Y_{t-1})}{\sum_{k} w_{t, k} p(y_t \mid E_k, Y_{t-1})} = \frac{v_{t, i} p(y_t \mid E_i, Y_{t-1})}{\sum_{k} v_{t, k} p(y_t \mid E_k, Y_{t-1})} \]

FOR LOG-LOSS THE \(e^{-\eta} \) LOSS UPDATE IS BAYES RULE
Algorithm predicts at trial t with the distribution:

$$p(y_t | y_{t-1})$$

$$= \sum_i p(E_i \cap y_t | y_{t-1})$$

$$= \sum_i \frac{p(y_t | E_i, y_{t-1}) \cdot p(E_i | y_{t-1})}{\text{PRED. OF EXPERT E_i}} \cdot \text{POSTERIOR}$$

$$= \text{MEAN POSTERIOR DISTRIBUTION}$$

$$p(A \cap B) = p(A | B) \cdot p(B)$$

$$p(A \cap B | C) = p(A | B, C) \cdot p(B | C)$$
Potential used in online learning literature:

$$\text{Pot}_{t+1} = -\frac{1}{\eta} \log \sum_{i=1}^{T} w_{t+1,i}$$

$$= - \log \sum_{i=1}^{T} \hat{p}(y_t \wedge E_i)$$

$$= - \log \hat{p}(y_t)$$

Key inequality

Loss of Alg. At Trial t

$$-\log \hat{p}(y_t | \overline{y}_{t-1}) = - \log \frac{\hat{p}(y_t)}{\hat{p}(\overline{y}_{t-1})}$$

$$= - \log \hat{p}(y_t) - (- \log \hat{p}(\overline{y}_{t-1}))$$

$$= \text{Pot}_{t+1} - \text{Pot}_t$$

Bound again:

$$\sum_{t=1}^{T} -\log \hat{p}(y_t | \overline{y}_{t-1}) = -\log \hat{p}(\overline{y}_T) + \text{Pot}_{T+1}$$

$$\leq -\log \sum_{i} \hat{p}(\overline{y}_T | E_i) \hat{p}(E_i)$$

$$\leq -\log \hat{p}(\overline{y}_T | E_i) \hat{p}(E_i)$$

$$= - \log \hat{p}(\overline{y}_T | E_i) + \log n$$

$$= \sum_{t=1}^{T} -\log \hat{p}(y_t | E_i, \overline{y}_{t-1}) + \log n$$

Total loss of $$E_i$$
Motivation of Update \(\eta = 1 \)

\[
\bar{v}_{t+1} = \min_{\sum v_i = 1} \Delta(\bar{v}, P(E_i)) + \sum_i v_i (-\ln P(E_i | y_t))
\]

Prior \quad Loss of \(E_i \)

\[
U_t(\bar{v})
\]

\[
V_{t+1,i} = \frac{P(E_i) e^{-(-\ln P(E_i | y_t))}}{Z_t}
\]

\[
= \frac{P(E_i) P(E_i | y_t)}{\sum_j P(E_j) P(E_j | y_t)}
\]

\[
= \frac{P(E_i \cap y_t)}{P(y_t)}
\]

\[
= P(E_i | y_t)
\]

\[
U_t(P(E_i | y_t)) = -\text{Log}(y_t)
\]

\[
= -\text{Log} \sum_i P(E_i \cap y_t)
\]
\[
\Delta (\bar{v}, P(E_i)) - \Delta (\bar{v}, P(E_i | \bar{y}_t)) = \sum \nu_i \ln P(\bar{y}_t | E_i) \\
= \sum \nu_i \ln \frac{P(E_i | \bar{y}_t)}{P(E_i)} \\
= \sum \nu_i \ln \frac{P(E_i) P(\bar{y}_t | E_i)}{P(\bar{y}_t)} \\
= \sum \nu_i \ln P(\bar{y}_t | E_i) - \ln Z_t + \sum \nu_i \ln P(\bar{y}_t | E_i) \\
= -\ln Z_t \\
= -\ln \sum_i P(E_i) P(\bar{y}_t | E_i) \\
= -\ln P(\bar{y}_t) \\
= \text{Pot}_{t+1}
\]