Designing adaptive systems
by maintaining a mixture over a set of experts

Manfred K. Warmuth Corrie Scalisi
Includes some earlier work with
Robert Gramacy, Scott Brandt and Ismail Ari

University of California - Santa Cruz

Dec 8, 2006 - NIPS workshop
Last update - December 13, 2006
Outline

1. Two example problems
2. Measuring the on-lineness of the data
3. The expert framework
4. Shifting experts
5. Experimental results
6. Wrap up
Outline

1. Two example problems
2. Measuring the on-lineness of the data
3. The expert framework
4. Shifting experts
5. Experimental results
6. Wrap up
1. Disk spindown problem

- When to spin down the disk on your laptop?
- Best time-out time/user/usage dependent

![First 3000 iterations of the Cello-2 Dataset]
Non-convex loss
2. Caching

- Whenever small, fast memory and larger, slower secondary memory
- Keep objects in faster memory which likely to be needed again soon
 - Hit if requested object resides in cache
 - Miss otherwise
Caching Policies

- Decides which objects to discard to make room for new requests

- 7 common policies: LRU, RAND, FIFO, LIFO, LFU and MFU

- 5 fancy recent policies: SIZE, GDS, GD*, GDSF, LFUDA

- Criteria:
 - Recency and frequency of access
 - Size of objects
 - Cost of fetching object from secondary memory

- De facto standard: LRU
Which Policy to Choose?

- **For which situation?**
 - Disk access on PC
 - Web proxy access via browser
 - File server on local network
 - Middle of the night during backup
 - Application as well as time dependent

- Choosing one is **suboptimal**

- All policies claimed to be on-line/adaptive
Two example problems

Characteristics Vary with Time

![Graph showing characteristics varying with time over time intervals from 205000 to 235000]
Two example problems

Best Policy Varies with time

![Graph showing varying best policies over time](image-url)
Outline

1. Two example problems

2. Measuring the on-lineness of the data

3. The expert framework

4. Shifting experts

5. Experimental results

6. Wrap up
First trick: Permute the data

- Data not on-line if permuting does not change things
- Algorithm not adaptive if same performance on permuted data
Measuring the on-lineness of the data

Permuting trick for disk spindown data

on-line :-)

not on-line :-(
Measuring the on-lineness of the data

Permuting caching data

highly on-line data

some caching policies already on-line
Good comparators?

- As good as BestFixed chosen in hind-sight
- But BestFixed does not capture on-lineness of data
 - Same performance on original and permuted data
BestShift(K) for spindown problem

Comparator:
- Partition of the timeline into segments
- Best in each segment

| 2 | 4 | 7 |

![Diagram showing average energy vs. total # of shifts with a point representing the partition.](image-url)
Measuring the on-lineness of the data

BestFixed\((K)\)

Dynamic programming: \(O(KN^2T)\)

where \(K\) \# of partitions, \(N\) \# of discrete idle times, \(T\) \# of trials

[H]
Measuring the on-lineness of the data

BestShift curves

BestShift(K) on Cello-2 Data
50 experts exponentially spaced between 0 and 10

BestShift(K) on Intel dataset
50 experts exponentially spaced between 0 and 10

on-line

not on-line
Comparators for caching

- **BestFixed**: *a posteriori best* of 12 policies on entire request stream
- **BestRefetching**\((R)\):
 minimum number of misses with at most \(R\) refetches
 in any sequence of switching policies
Comparator: All sequences of the form

We plot miss rate v.s. refetches:
Measuring the on-lineness of the data

BestRefetching(R)

Dynamic programming: $O(RN^2T)$
Goal for on-line algorithms

- Beat BestFixed (easy)
- Get close to BestShift / BestRefetching
- In caching reduce I/O’s and end-user latency
- Fast algorithms
Score card for caching algorithms

- Miss Rate (%)
- Refetches as % of Total Requests

- A: Total I/Os less than BestFixed
- B: Total I/Os less than LRU
- C: Total I/O more than LRU

- +: Better than BestRefetching
- -: Worse than BestFixed

miss + refetch ≤ LRU miss

miss + refetch ≤ BestFixed miss

Designing adaptive systems by maintaining a mixture over a set of experts

M. Warmuth (UCSC)
Outline

1. Two example problems
2. Measuring the on-lineness of the data
3. The expert framework
4. Shifting experts
5. Experimental results
6. Wrap up
What experts?

Caching:
- 12 caching policies

Disk spin down:
- Discretize interval $[0, \text{spindowncost}]$
On-line algorithm for learning as well as best experts

One weight per expert

- Represent confidence of master algorithm in expert
- Master algorithm predicts with convex combination of experts
- Loss update: \(w_i^{t+1} \sim \frac{w_i^t e^{-\eta L_i^t}}{Z_t} \)
- Designed to do well against BestFixed
- In some cases \(\log N \) regret
Outline

1. Two example problems
2. Measuring the on-lineness of the data
3. The expert framework
4. Shifting experts
5. Experimental results
6. Wrap up
Shifting experts

As well as best partition

| 2 | 4 | 7 |

- **Loss Update** follows too well
- Follow it by **Share Update**:
 - Mix in small in $\alpha = 5\%$ times past average weight
 - Updates recover after each shift
 - Faster recovery if expert was used before
 - In some cases regret = $\#$ of bits to encode best partition
Outline

1. Two example problems
2. Measuring the on-lineness of the data
3. The expert framework
4. Shifting experts
5. Experimental results
6. Wrap up
Spindown results

Experimental results

Spindown results

M. Warmuth (UCSC)

Designing adaptive systems by maintaining a mixture over a set of experts

30 / 37
Experimental results

Caching - we “Tracks” best policy
Experimental results

WWk

WWk Master and Comparator Missrates

8.6% = LRU missrate
2.0% = Obligatory missrate

BestRefetching(R)
Rank Ideal
Rank 60% Ideal
Rank 40% Ideal
BestFixed = SIZE
AllVC

Missrates %

Refetches as % of Total Requests
UMo Master and Comparator Missrates

16.6% = LRU missrate
1.5% = Obligatory missrate

- BestRefetching(R)
- Rank Ideal
- Rank 60% Ideal
- Rank 40% Ideal
- BestFixed = GDS
- AllVC
Experimental results

SMoLRU Master and Comparator Missrates

59.8% = LRU missrate
15.3% = Obligatory missrate

Missrates %

Refetches as % of Total Requests

BestRefetching(R)
- Rank Ideal
- Rank 60% Ideal
- Rank 40% Ideal
- BestFixed = SIZE
- AllVC
Outline

1. Two example problems
2. Measuring the on-lineness of the data
3. The expert framework
4. Shifting experts
5. Experimental results
6. Wrap up
Pushing the theoretical analysis

Disk spindown:
- Non-convex loss, but in each trial only two loss values
- Experts are sorted
- Analyze with continuously many experts

Caching:
- Prove bounds for ARCing
The upshot

- Measure on-lineness of data
- Design algorithms that provably exploit on-lineness
- Many simple on-line problems amenable to theoretical analysis