STREAMLINE SETUP (NO LABELS)

FOR $t = 1$ TO T

CHOOSE AN EXPERT i

GET LOSS VECTOR $\tilde{L}_t \in [0,1]^N$

INCR LOSS $L_{t,i}$

GOAL: ACHIEVE SMALL REGRET

TOTAL LOSS OF ALG - TOTAL LOSS OF BEST

ALG T: FOLLOW THE LEADER

- ALWAYS CHOOSE THE BEST EXPERT
 (BRAKE TIES ARBITRARILY)

ADVERSARY:

- CHOSEN EXPERT 1 UNIT OF LOSS
- ALL OTHERS LOSS 0

FACTOR OF n OFF

LOSS OF ALG T

LOSS OF BEST $\left\lfloor \frac{T}{n} \right\rfloor$
ALG II: RANDOMIZED WEIGHTED MAJORITY

ALGORITHM

PROBABILISTIC CHOICE OF EXPERT

\(\overline{w}_t \): probability vector used at trial \(t \)

\(w_{t,i} \): "believe" at trial \(t \) that \(i \) is best

\(\overline{w}_t = \left(\frac{1}{m}, \ldots, \frac{1}{m} \right) \)

FOR \(t = 1 \) **TO** \(T \) **DO**

CHOOSE EXPERT \(i \) **WITH** \(\text{PROB.} \ w_{t,i} \)

GET LOSS VECTOR \(\overline{L}_t \)

INCREMENT LOSS \(L_{t,i} \) **OR**

EXPECTED LOSS \(\overline{w}_t \cdot \overline{L}_t = \sum_{i} w_{t,i} L_{t,i} \)

\[w_{t+1,i} = \frac{w_{t,i} e^{-\eta L_{t,i}}}{\sum_i w_{t,i} e^{-\eta L_{t,i}}} \]

↑ NORMALIZATION

\(\eta > 0 \) **LEARNING RATE**

\[e^{-\eta} = \beta \]

\[e^{-\infty} = 0 \]
\[w_{t+1, i} = \frac{e^{-\eta L_{t, i}}}{Z_t} \]

As \(\eta \to \infty \), all weight placed on best & WMR becomes "follow the leader"

\[w_{t+1, i} = \frac{w_{t, i} e^{-\eta L_{t, i}}}{Z_t} = \frac{w_{t, i} e^{-\eta L_{t, i}}}{\sum w_{t, i} e^{-\eta L_{t, i}}} \]

\(\eta = 0 \): weights unchanged

\(\eta > 0 \): gradually move weight to experts with low loss

"Soft Min"

\(\eta < 0 \) \rightarrow high loss
ANALYSIS:

POTENTIAL:

\[P_t = - \ln \sum_i w_{i, i} e^{-\eta L_{t, i}} \]

↑

DUE TO NORMALIZATION

\[P_{t+1} - P_t = - \ln \sum_i w_{i, i} e^{-\eta L_{t+1, i}} + \ln \sum_i w_{i, i} e^{-\eta L_{t, i}} \]

\[= - \ln \frac{\sum_i w_{i, i} e^{-\eta L_{t+1, i}} e^{-\eta L_{t, i}}}{\sum_i w_{i, i} e^{-\eta L_{t+1, i}}} \]

\[= - \ln \sum_i w_{t, i} e^{-\eta L_{t, i}} \]

\[\geq - \ln \sum_i w_{t, i} (1 - (1 - e^{-\eta}) L_{t, i}) \]

\[e^{\eta x} \leq 1 - (1 - e^{-\eta}) x \quad \text{for } x \in [0, 1] \]

\[\ln(1-x) \leq -x \]

\[\ln(1-x) x \leq (1 - e^{-\eta}) \bar{w}_t \cdot \bar{L}_t \]

DROP OF POTENTIAL

\[\geq (1 - e^{-\eta}) \text{ LOSS OF ALG.} \]
\[\sum_{t=1}^{T} P_{t+1} - P_t \geq (1-e^{-\eta}) \sum_{t=1}^{T} w_t \cdot L_t \]

Lower Bound

\[\sum_{t=1}^{T} P_{t+1} - P_t = P_{T+1} - P_1 = 0 \]

\[= -\ln \frac{1}{\bar{w}_{t,i}} e^{-\eta} L_{t,i} \]

\[\leq -\ln \bar{w}_{t,i} e^{-\eta} L_{t,i} \]

\[= -\ln \bar{w}_{t,i} + \eta L_{t,i} \]

Upper Bound

\[\sum_{t=1}^{T} w_t \cdot L_t \leq \frac{\ln \frac{1}{\bar{w}_{t,i}} + \eta L_{t,i}}{1-e^{-\eta}} \]

If \(\bar{w}_i = \left(\frac{1}{n} \cdots \frac{1}{n} \right) \) THEN \(\ln \frac{1}{\bar{w}_{t,i}} = \ln n \)

- Can handle lots of experts

\(\eta = 1 \) gives bounds of the form

\[L_{ALC} \leq a \text{ loss of best} + b \ln n \]

\(a, b \geq 1 \)

If \(\eta \) tuned as function of \(n \) & \(\hat{L} \) then

\[\sum_{t=1}^{T} w_t L_t \leq \frac{\text{ms} L_{t,i} + \sqrt{2\hat{L} \ln n}}{\hat{L}^*} + \ln n \]

If \(L^* \leq \hat{L} \)
BIG PICTURE
- WE USED EXPONENTIAL WEIGHTS
 AND SOFTMIN TO ACHIEVE REGRET BOUNDS

- EXPECTED LOSS BOUNDS HOLD FOR
 ARBITRARY SEQUENCES

- EXPECTATION WRT INTERNAL RANDOMIZATION
 OF ALG

- LOGARITHMIC DEPENDANCE ON # OF EXPERTS
 , TYPICAL FOR "MULTIPlicative"
 UPDATES

QUESTIONS:
- LOWER BOUNDS ?
- MOTIVATION OF UPDATES ?
- WHERE DID THE POTENTIAL
 COME FROM ?
- WHAT ABOUT OTHER LOSS FUNCTIONS ?
- COMPARE AGAINST BEST LINEAR COMBINATION
 OF EXPERTS ?
Lots of "stupid" experts are "specialized" combined to something better.

Later: Boosting

- Iteratively builds
 small linear combination
 of weak hypothesis

For fun: Bug machine

Many stupid bugs better
than one smart bug

- Variety is asset in changing environment