The **Hedge**(η) Algorithm

Yoav Freund

January 12, 2006
Outline

Hedge(η) Algorithm
 - Hedging vs. Halving

Bound on total loss
 - Upper bound on $\sum_{i=1}^{N} w_i^{T+1}$
 - Lower bound on $\sum_{i=1}^{N} w_i^{T+1}$
 - Combining Upper and Lower bounds

tuning η

Lower Bounds
The hedging problem

- \(N \) possible actions
- At each time step \(t = 1, 2, \ldots, T \):
 - Algorithm chooses a distribution \(p^t \) over actions.
 - Losses \(0 \leq \ell_i^t \leq 1 \) of all actions \(i = 1, \ldots, N \) are revealed.
 - Algorithm suffers expected loss \(p^t \cdot \ell^t \)
- **Goal:** minimize total expected loss
- Here we have stochasticity - but only in algorithm, not in outcome
- Fits nicely in game theory
Hedging vs. Halving

- Like halving - we want to zoom into best action (expert).
- Unlike halving - no action is perfect.
- Basic idea - reduce probability of lossy actions, but not all the way to zero.

Modified Goal: minimize difference between expected total loss and minimal total loss of repeating one action.

\[
\sum_{t=1}^{T} p_t \cdot \ell_t - \min_i \left(\sum_{t=1}^{T} \ell^t_i \right)
\]
Using hedge to generalize halving alg.

- Suppose that there is no perfect expert.
- action i = use prediction of expert i
- Now each iteration of game consistst of three steps:
 - Experts make predictions $e_i^t \in \{0, 1\}$
 - Algorithm predicts 1 with probability $\sum_{i:e_i^t=1} p_i^t$.
 - outcome o_i^t is revealed. $\ell_i^t = 0$ if $e_i^t = o_i^t$, $\ell_i^t = 1$ otherwise.
The **Hedge**(\(\eta\)) Algorithm

Consider action \(i\) at time \(t\)

- **Total loss:**

\[
L_i^t = \sum_{s=1}^{t-1} \ell_i^s
\]

- **Weight:**

\[
w_i^t = w_i^1 e^{-\eta L_i^t}
\]

Note freedom to choose initial weight \((w_i^1)\) \(\sum_{i=1}^{n} w_i^1 = 1\).

- \(\eta > 0\) is the learning rate parameter. Halving: \(\eta \rightarrow \infty\)

- **Probability:**

\[
p_i^t = \frac{w_i^t}{\sum_{j=1}^{N} w_j^t}, \quad p^t = \frac{w^t}{\sum_{j=1}^{N} w_j^t}
\]
Choosing the initial weights

- Giving an action high initial weight makes alg perform well if that action performs well.
- If good action has low initial weight, our total loss will be larger.
- As $\sum_{i=1}^{n} w_i = 1$ increasing one weight implies decreasing some others.
- Plays a similar role to prior distribution in Bayesian algorithms.
Bound on the loss of \textbf{Hedge}(\eta) Algorithm

- **Theorem (main theorem)**

 For any sequence of loss vectors \(\ell^1, \ldots, \ell^T \), and for any \(i \in \{1, \ldots, N\} \), we have

 \[
 L_{\text{Hedge}}(\eta) \leq -\ln(w_i^1) + \eta L_i \left/ \frac{1 - e^{-\eta}}{1 - e^{-\eta}} \right.
 \]

- **Proof**: by combining upper and lower bounds on \(\sum_{i=1}^{N} w_i^{T+1} \)
Lemma (upper bound)

For any sequence of loss vectors ℓ^1, \ldots, ℓ^T we have

$$\ln \left(\sum_{i=1}^{N} w_i^{T+1} \right) \leq -(1 - e^{-\eta}) L_{\text{Hedge}(\eta)}.$$
Proof of upper bound (slide 1)

- If $a \geq 0$ then a^r is convex.
- For $r \in [0, 1]$, $a^r \leq 1 - (1 - a)r$
Proof of upper bound (slide 2)

Applying \(a^r \leq 1 - (1 - a)^r \) where \(a = e^{-\eta}, r = \ell_i^t \)

\[
\sum_{i=1}^{N} w_{i}^{t+1} = \sum_{i=1}^{N} w_{i}^{t} e^{-\eta \ell_i^t} \\
\leq \sum_{i=1}^{N} w_{i}^{t} (1 - (1 - e^{-\eta}) \ell_i^t) \\
= \left(\sum_{i=1}^{N} w_{i}^{t} \right) \left(1 - (1 - e^{-\eta}) \frac{w^t}{\sum_{i=1}^{N} w_{i}^{t}} \cdot \ell^t \right) \\
= \left(\sum_{i=1}^{N} w_{i}^{t} \right) (1 - (1 - e^{-\eta}) p^t \cdot \ell^t)
\]
Proof of upper bound (slide 3)

- Combining

\[
\sum_{i=1}^{N} w_{i}^{t+1} \leq \left(\sum_{i=1}^{N} w_{i}^{t} \right) \left(1 - (1 - e^{-\eta}) p^{t} \cdot \ell^{t} \right)
\]

- for \(t = 1, \ldots, T \)
- yields

\[
\sum_{i=1}^{N} w_{i}^{T+1} \leq \prod_{t=1}^{T} \left(1 - (1 - e^{-\eta}) p^{t} \cdot \ell^{t} \right)
\]

\[
\leq \exp \left(-(1 - e^{-\eta}) \sum_{t=1}^{T} p^{t} \cdot \ell^{t} \right)
\]

since \(1 + x \leq e^{x} \) for \(x = -(1 - e^{-\eta}) \).
Hedge(η)

- Bound on total loss
- Lower bound on $\sum_{i=1}^{N} w_i^{T+1}$

Lower bound on $\sum_{i=1}^{N} w_i^{T+1}$

For any $j = 1, \ldots, N$:

$$\sum_{i=1}^{N} w_i^{T+1} \geq w_j^{T+1} = w_j^1 e^{-\eta L_j}$$
Combining Upper and Lower bounds

- Combining bounds on \(\ln \left(\sum_{i=1}^{N} w_i^{T+1} \right) \)

\[
\ln w_j^1 - \eta L_j \leq \ln \sum_{i=1}^{N} w_i^{T+1} \leq -(1 - e^{-\eta}) \sum_{t=1}^{T} p^t \cdot \ell^t
\]

- Reversing signs, using \(L_{\text{Hedge}}(\eta) = \sum_{t=1}^{T} p^t \cdot \ell^t \) and reorganizing we get

\[
L_{\text{Hedge}}(\eta) \leq \frac{-\ln(w_i^1) + \eta L_i}{1 - e^{-\eta}}
\]
Tuning η

How to Use Expert Advice

$L_A(y) - L_\varepsilon$
Tuning η

- Suppose $\min_i L_i \leq \tilde{L}$
- set
 $$\eta = \ln \left(1 + \sqrt{\frac{2 \ln N}{\tilde{L}}} \right) \approx \sqrt{\frac{2 \ln N}{\tilde{L}}}$$
- use uniform initial weights $w^1 = \langle 1/N, \ldots, 1/N \rangle$
- Then
 $$L_{\text{Hedge}(\eta)} \leq -\ln(w^1_i) + \eta L_i \leq \min_i L_i + \sqrt{2\tilde{L} \ln N} + \ln N$$
Tuning η as a function of T

- trivially $\min_i L_i \leq T$, yielding

$$L_{\text{Hedge}(\eta)} \leq \min_i L_i + \sqrt{2T \ln N} + \ln N$$

- per iteration we get:

$$\frac{L_{\text{Hedge}(\eta)}}{T} \leq \min_i \frac{L_i}{T} + \sqrt{\frac{2 \ln N}{T}} + \frac{\ln N}{T}$$
How good is this bound?

- **Very good!** There is a closely matching lower bound!
- There exists a stochastic adversarial strategy such that with high probability for any hedging strategy S after T trials

\[L_S - \min_i L_i \geq (1 - o(1))\sqrt{2T \ln N} \]

- The adversarial strategy is random, extremely simple, and does not depend on the hedging strategy!
The adversarial strategy

- Adversary sets each loss ℓ_i^t independently at random to 0 or 1 with equal probabilities $(1/2, 1/2)$.
- Obviously, nothing to learn!
 \[L_S \approx T/2. \]
- On the other hand $\min_i L_i \approx T/2 - \sqrt{2T \ln N}$
- The difference $L_S - \min_i L_i$ is due to unlearnable random fluctuations!
- Detailed proof quite involved. See games paper.
Summary

- Given learning rate η the $\text{Hedge}(\eta)$ algorithm satisfies
 \[
 L_{\text{Hedge}(\eta)} \leq \frac{\ln N + \eta L_i}{1 - e^{-\eta}}
 \]

- Setting $\eta \approx \sqrt{\frac{2 \ln N}{T}}$ guarantees
 \[
 L_{\text{Hedge}(\eta)} \leq \min_i L_i + \sqrt{2T \ln N} + \ln N
 \]

- A trivial random data, in which there is nothing to be learned forces any algorithm to suffer this total loss.
Some loose threads

- Total Loss of best action usually scales linearly with time, but we can’t change η on the fly. (I think El Yaniv proposed a reasonable solution).
- Observing only the loss of chosen action - the multi-armed bandit problem. Will get to that later in the course.
- Next time: cumulative log loss and lossless data compression.
- Register on TWiki, add yourself to lists, and post your questions there!
- Office hour: 2-3pm on tuesdays.