Decision Trees

Decision Trees - play golf?

Outlook?
- sunny
- cloudy
- rain

Temp.
- <95
- >95

Yes
- No

Finding a good tree

• Want accuracy on training data but don’t want to memorize it
• Small tree good for generalization
• Finding smallest tree consistent with data is NP hard (how many trees?)
• Use greedy search to build trees top down -- can miss XOR

Decision tree algorithm

• If data pure (all one class) then return a leaf predicting the class
• Otherwise:
 - Pick a test to split on (discrete attribute or attribute+threshold)
 - Insert node with test into tree
 - split training data based on test, and recursively construct each branch from proper portion of data

How to chose test?

• Use a splitting criteria like number of mistakes or information gain
• Often viewed as “impurity” measure, goal: minimize the impurity
• Try all possible splits and use the one that optimizes the criteria
• Many algorithms use measures related to information theory
Impurity measures

- If have n total examples with n_+ positive examples, let $p = n_+ / n$
- Examples of 2-class impurity functions (as function of p)
 - Gini index: $2p(1-p)$
 - Entropy: $-p \log p - (1-p) \log (1-p)$
 - Error rate: $1 - \max[p, 1-p]$
 - Generalized entropy for multiple classes

Impurity of split

- If have set S of n examples split into S_1 and S_2. Let n_1 be number examples in S_1 and p_1 be fraction of S_1 labeled positive (n_2, p_2 similar for S_2)
- Badness of split is average impurity: $[n_1 \text{ impurity}(p_1) + n_2 \text{ impurity}(p_2)] / n$
- Pick split with least badness
- Generalizes to multi-way splits (need to penalize them too)

Decision Trees can overfit

- Overfitting - modeling the particulars of the data set rather than the underlying pattern
- **Def**: Hypothesis $h \in H$ overfits the data if there is an $h' \in H$ such that h better on training data but h' generalizes better.
- Complexity of decision trees lets them fit the noise

ID3 overfits (Mitchell)

- Prune (replace subtrees with leaves) to reduce variance
- **PrePruning** – stop early (faster)
- **PostPruning** (more popular/accurate)
 - Based on validation set
 - Rule post-pruning:
 - convert to rules, generalize if accuracy improves, and apply rules in order of accuracy
Rule Extraction from Trees

C4.5Rules
(Quinlan, 1993)

Decision tree comments:

- Several packages e.g. ID3, C4.5
 Weka has J48 and BFTree
- Often heavily engineered to handle
 missing data, overfitting, numeric vs.
 nominal attributes, etc.
- Multivariate trees
- Regression trees

Random Forests

- Pick small random subset of features to try at
 each node rather than exhaustive search
- Build many trees and predict with most
 frequent prediction
- Subset saves time, robust against missing
 data
- Ensemble reduces variance - don’t need
 pruning
- Ho ’95, Brieman ’01

Exercise

1. Make up an XOR.arff data file with 12
 examples. Each example x labeled
 with x₁ XOR x₂, and add 10 irrelevant
 and random binary features.
2. Try Weka’s ID3 on the XOR data.
3. Try Weka’s J48 on the soybean data - is the tree understandable?

Tree and kNN comparison

<table>
<thead>
<tr>
<th></th>
<th>Decision Trees</th>
<th>Nearest Neighbor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>Trees - flexible</td>
<td>Instance based, flexible</td>
</tr>
<tr>
<td>Data</td>
<td>mixed</td>
<td>Usually Numeric</td>
</tr>
<tr>
<td>Interpretable</td>
<td>If small tree</td>
<td>Only in 1 or 2 dimensions</td>
</tr>
<tr>
<td>Missing values</td>
<td>Tricks</td>
<td>Training set no, but ok for test points</td>
</tr>
<tr>
<td>Noise/outliers</td>
<td>Good with pruning</td>
<td>Good with kNN</td>
</tr>
</tbody>
</table>
Tree and kNN Robustness

<table>
<thead>
<tr>
<th>Feature</th>
<th>Decision tree</th>
<th>Nearest neighbor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monotone transformation</td>
<td>Great</td>
<td>Very bad</td>
</tr>
<tr>
<td>Irrelevant features</td>
<td>Fair</td>
<td>Very bad</td>
</tr>
<tr>
<td>Computation time</td>
<td>OK</td>
<td>Lazy Learning Prediction hard</td>
</tr>
</tbody>
</table>

Decision Tree Summary:

- Model: trees (flexible size/complexity)
- Data: numeric and nominal
- Interpretable: if small tree,
- Noise/outliers: OK with pruning
- Irrelevant features: fair
- Missing attributes: some tricks
- Computation time: OK

Next: Neural Networks