Binary Variables (1)

Coin flipping: heads=1, tails=0

\[p(x = 1 | \mu) = \mu \]

Bernoulli Distribution

\[
\begin{align*}
\text{Bern}(x | \mu) &= \mu^x (1 - \mu)^{1-x} \\
\mathbb{E}[x] &= \mu \\
\text{var}[x] &= \mu (1 - \mu)
\end{align*}
\]
Binary Variables (2)

N coin flips:

\[p(m \text{ heads} | N, \mu) \]

Binomial Distribution

\[\text{Bin}(m|N, \mu) = \binom{N}{m} \mu^m (1 - \mu)^{N-m} \]

\[\mathbb{E}[m] \equiv \sum_{m=0}^{N} m \text{Bin}(m|N, \mu) = N \mu \]

\[\text{var}[m] \equiv \sum_{m=0}^{N} (m - \mathbb{E}[m])^2 \text{Bin}(m|N, \mu) = N \mu (1 - \mu) \]
Binomial Distribution

\[\text{Bin}(m|10, 0.25) \]
Parameter Estimation (1)

ML for Bernoulli

Given: \(\mathcal{D} = \{x_1, \ldots, x_N\} \), \(m \) heads (1), \(N - m \) tails (0)

\[
p(\mathcal{D} | \mu) = \prod_{n=1}^{N} p(x_n | \mu) = \prod_{n=1}^{N} \mu^{x_n} (1 - \mu)^{1-x_n}
\]

\[
\ln p(\mathcal{D} | \mu) = \sum_{n=1}^{N} \ln p(x_n | \mu) = \sum_{n=1}^{N} \{x_n \ln \mu + (1 - x_n) \ln(1 - \mu)\}
\]

\[
\mu_{ML} = \frac{1}{N} \sum_{n=1}^{N} x_n = \frac{m}{N}
\]
Parameter Estimation (2)

Example: \(\mathcal{D} = \{1, 1, 1\} \rightarrow \mu_{ML} = \frac{3}{3} = 1 \)

Prediction: *all* future tosses will land heads up

Overfitting to \(\mathcal{D} \)
Beta Distribution

Distribution over $\mu \in [0, 1]$.

$$\text{Beta}(\mu | a, b) = \frac{\Gamma(a + b)}{\Gamma(a)\Gamma(b)} \mu^{a-1}(1 - \mu)^{b-1}$$

$$\mathbb{E}[\mu] = \frac{a}{a + b}$$

$$\text{var}[\mu] = \frac{ab}{(a + b)^2(a + b + 1)}$$
Multinomial Variables

1-of-K coding scheme: \(\mathbf{x} = (0, 0, 1, 0, 0, 0)^T \)

\[
p(\mathbf{x} | \mathbf{\mu}) = \prod_{k=1}^{K} \mu_k^{x_k}
\]

\(\forall k : \mu_k \geq 0 \) and \(\sum_{k=1}^{K} \mu_k = 1 \)

\[
\mathbb{E}[\mathbf{x} | \mathbf{\mu}] = \sum_{\mathbf{x}} p(\mathbf{x} | \mathbf{\mu}) \mathbf{x} = (\mu_1, \ldots, \mu_K)^T = \mathbf{\mu}
\]

\[
\sum_{\mathbf{x}} p(\mathbf{x} | \mathbf{\mu}) = \sum_{k=1}^{K} \mu_k = 1
\]
ML Parameter estimation

Given: \(\mathcal{D} = \{x_1, \ldots, x_N\} \)

\[
p(\mathcal{D}|\mu) = \prod_{n=1}^{N} \prod_{k=1}^{K} \mu_k^{x_{nk}} = \prod_{k=1}^{K} \mu_k^{(\sum_n x_{nk})} = \prod_{k=1}^{K} \mu_k^{m_k}
\]

Ensure \(\sum_k \mu_k = 1 \), use a Lagrange multiplier, \(\lambda \).

\[
\sum_{k=1}^{K} m_k \ln \mu_k + \lambda \left(\sum_{k=1}^{K} \mu_k - 1 \right)
\]

\[
\mu_k = -\frac{m_k}{\lambda} \quad \mu_k^{\text{ML}} = \frac{m_k}{N}
\]
The Multinomial Distribution

\[
\text{Mult}(m_1, m_2, \ldots, m_K \mid \mu, N) = \left(\begin{array}{c} N \\ m_1 m_2 \ldots m_K \end{array} \right) \prod_{k=1}^{K} \mu_k^{m_k}
\]

\[
\mathbb{E}[m_k] = N \mu_k
\]

\[
\text{var}[m_k] = N \mu_k (1 - \mu_k)
\]

\[
\text{cov}[m_j m_k] = -N \mu_j \mu_k
\]
The Gaussian Distribution

\[N(x|\mu, \sigma^2) = \frac{1}{(2\pi\sigma^2)^{1/2}} \exp \left\{ -\frac{1}{2\sigma^2} (x - \mu)^2 \right\} \]

\[N(x|\mu, \Sigma) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\Sigma|^{1/2}} \exp \left\{ -\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right\} \]
Central Limit Theorem

The distribution of the sum of N i.i.d. random variables becomes increasingly Gaussian as N grows.

Example: N uniform $[0, 1]$ random variables.
Geometry of the Multivariate Gaussian

\[\Delta^2 = (x - \mu)^T \Sigma^{-1} (x - \mu) \]

\[\Sigma^{-1} = \sum_{i=1}^{D} \frac{1}{\lambda_i} u_i u_i^T \]

\[\Delta^2 = \sum_{i=1}^{D} \frac{y_i^2}{\lambda_i} \]

\[y_i = u_i^T (x - \mu) \]
Moments of the Multivariate Gaussian (1)

\[
\mathbb{E}[x] = \frac{1}{(2\pi)^{D/2} |\Sigma|^{1/2}} \int \exp \left\{ -\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right\} x \, dx
\]

\[
= \frac{1}{(2\pi)^{D/2} |\Sigma|^{1/2}} \int \exp \left\{ -\frac{1}{2} z^T \Sigma^{-1} z \right\} (z + \mu) \, dz
\]

thanks to anti-symmetry of \(z \)

\[
\mathbb{E}[x] = \mu
\]
Moments of the Multivariate Gaussian (2)

\[\mathbb{E}[xx^T] = \mu \mu^T + \Sigma \]

\[\text{cov}[\mathbf{x}] = \mathbb{E} \left[(\mathbf{x} - \mathbb{E}[\mathbf{x}])(\mathbf{x} - \mathbb{E}[\mathbf{x}])^T \right] = \Sigma \]
Maximum Likelihood for the Gaussian (1)

Given i.i.d. data $X = (x_1, \ldots, x_N)^T$, the log likelihood function is given by

$$
\ln p(X|\mu, \Sigma) = -\frac{ND}{2}\ln(2\pi) - \frac{N}{2}\ln |\Sigma| - \frac{1}{2} \sum_{n=1}^{N} (x_n - \mu)^T \Sigma^{-1} (x_n - \mu)
$$

Sufficient statistics

$$
\sum_{n=1}^{N} x_n \quad \sum_{n=1}^{N} x_n x_n^T
$$
Maximum Likelihood for the Gaussian (2)

Set the derivative of the log likelihood function to zero,

$$\frac{\partial}{\partial \mu} \ln p(X|\mu, \Sigma) = \sum_{n=1}^{N} \Sigma^{-1}(x_n - \mu) = 0$$

and solve to obtain

$$\mu_{ML} = \frac{1}{N} \sum_{n=1}^{N} x_n.$$

Similarly

$$\Sigma_{ML} = \frac{1}{N} \sum_{n=1}^{N} (x_n - \mu_{ML})(x_n - \mu_{ML})^T.$$
Maximum Likelihood for the Gaussian (3)

Under the true distribution

\[\mathbb{E}[\mu_{ML}] = \mu \]

\[\mathbb{E}[\Sigma_{ML}] = \frac{N - 1}{N} \Sigma. \]

Hence define

\[\tilde{\Sigma} = \frac{1}{N - 1} \sum_{n=1}^{N} (x_n - \mu_{ML})(x_n - \mu_{ML})^T. \]
Sequential Estimation

Contribution of the N^{th} data point, x_N

$$\mu_{\text{ML}}^{(N)} = \frac{1}{N} \sum_{n=1}^{N} x_n$$

$$= \frac{1}{N} x_N + \frac{1}{N} \sum_{n=1}^{N-1} x_n$$

$$= \frac{1}{N} x_N + \frac{N-1}{N} \mu_{\text{ML}}^{(N-1)}$$

$$= \mu_{\text{ML}}^{(N-1)} + \frac{1}{N} (x_N - \mu_{\text{ML}}^{(N-1)})$$

- correction given x_N
- correction weight
- old estimate
Mixtures of Gaussians (1)

Old Faithful data set

Single Gaussian

Mixture of two Gaussians
Mixtures of Gaussians (2)

Combine simple models into a complex model:

\[p(x) = \sum_{k=1}^{K} \pi_k \mathcal{N}(x|\mu_k, \Sigma_k) \]

Component Mixing coefficient

\[\forall k : \pi_k \geq 0 \quad \sum_{k=1}^{K} \pi_k = 1 \]

K=3
Mixtures of Gaussians (3)
Mixtures of Gaussians (4)

Determining parameters π, μ, and Σ using maximum log likelihood

$$\ln p(X|\pi, \mu, \Sigma) = \sum_{n=1}^{N} \ln \left\{ \sum_{k=1}^{K} \pi_k \mathcal{N}(x_n | \mu_k, \Sigma_k) \right\}$$

Log of a sum; no closed form maximum.

Solution: use standard, iterative, numeric optimization methods or the *expectation maximization* algorithm (Chapter 9).
The Exponential Family (1)

\[p(x|\eta) = h(x)g(\eta) \exp \left\{ \eta^T u(x) \right\} \]

where \(\eta \) is the natural parameter and

\[g(\eta) \int h(x) \exp \left\{ \eta^T u(x) \right\} \, dx = 1 \]

so \(g(\eta) \) can be interpreted as a normalization coefficient.
The Exponential Family (2.1)

The Bernoulli Distribution

\[
p(x | \mu) = \text{Bern}(x | \mu) = \mu^x (1 - \mu)^{1-x} = \exp \left\{ x \ln \mu + (1 - x) \ln(1 - \mu) \right\} = (1 - \mu) \exp \left\{ \ln \left(\frac{\mu}{1 - \mu} \right) x \right\}
\]

Comparing with the general form we see that

\[
\eta = \ln \left(\frac{\mu}{1 - \mu} \right) \quad \text{and so} \quad \mu = \sigma(\eta) = \frac{1}{1 + \exp(-\eta)}.
\]

Logistic sigmoid
The Exponential Family (2.2)

The Bernoulli distribution can hence be written as

\[p(x | \eta) = \sigma(-\eta) \exp(\eta x) \]

where

\[
\begin{align*}
u(x) &= x \\
h(x) &= 1 \\
g(\eta) &= 1 - \sigma(\eta) = \sigma(-\eta).
\end{align*}
\]
The Exponential Family (3.1)

The Multinomial Distribution

\[p(x|\mu) = \prod_{k=1}^{M} \mu_{k}^{x_{k}} = \exp \left\{ \sum_{k=1}^{M} x_{k} \ln \mu_{k} \right\} = h(x)g(\eta) \exp (\eta^{T}u(x)) \]

where, \(x = (x_{1}, \ldots, x_{M})^{T} \), \(\eta = (\eta_{1}, \ldots, \eta_{M})^{T} \) and

\[\eta_{k} = \ln \mu_{k} \]
\[u(x) = x \]
\[h(x) = 1 \]
\[g(\eta) = 1. \]

NOTE: The \(\eta_{k} \) parameters are not independent since the corresponding \(\mu_{k} \) must satisfy
\[\sum_{k=1}^{M} \mu_{k} = 1. \]
The Exponential Family (3.2)

Let $\mu_M = 1 - \sum_{k=1}^{M-1} \mu_k$. This leads to

$$\eta_k = \ln \left(\frac{\mu_k}{1 - \sum_{j=1}^{M-1} \mu_j} \right) \quad \text{and} \quad \mu_k = \frac{\exp(\eta_k)}{1 + \sum_{j=1}^{M-1} \exp(\eta_j)}.$$

Here the parameters are independent.

Note that

$$0 \leq \mu_k \leq 1 \quad \text{and} \quad \sum_{k=1}^{M-1} \mu_k \leq 1.$$
The Exponential Family (3.3)

The Multinomial distribution can then be written as

\[p(x|\mu) = h(x)g(\eta) \exp (\eta^T u(x)) \]

where

\[\eta = (\eta_1, \ldots, \eta_{M-1}, 0)^T \]
\[u(x) = x \]
\[h(x) = 1 \]
\[g(\eta) = \left(1 + \sum_{k=1}^{M-1} \exp(\eta_k) \right)^{-1} \]
The Exponential Family (4)

The Gaussian Distribution

\[p(x | \mu, \sigma^2) = \frac{1}{(2\pi\sigma^2)^{1/2}} \exp \left\{ -\frac{1}{2\sigma^2} (x - \mu)^2 \right\} \]

\[= \frac{1}{(2\pi\sigma^2)^{1/2}} \exp \left\{ -\frac{1}{2\sigma^2} x^2 + \frac{\mu}{\sigma^2} x - \frac{1}{2\sigma^2} \mu^2 \right\} \]

\[= h(x) g(\eta) \exp \{ \eta^T u(x) \} \]

where

\[\eta = \begin{pmatrix} \mu/\sigma^2 \\ -1/2\sigma^2 \end{pmatrix} \quad h(x) = (2\pi)^{-1/2} \]

\[u(x) = \begin{pmatrix} x \\ x^2 \end{pmatrix} \quad g(\eta) = (-2\eta_2)^{1/2} \exp \left(\frac{\eta_1^2}{4\eta_2} \right). \]
ML for the Exponential Family (1)

From the definition of \(g(\cdot) \) we get

\[
\nabla g(\eta) \int h(x) \exp \{ \eta^T u(x) \} \, dx + g(\eta) \int h(x) \exp \{ \eta^T u(x) \} \, u(x) \, dx = 0
\]

Thus

\[
-\nabla \ln g(\eta) = \mathbb{E}[u(x)]
\]
ML for the Exponential Family (2)

Give a data set, $X = \{x_1, \ldots, x_N\}$, the likelihood function is given by

$$p(X|\eta) = \left(\prod_{n=1}^{N} h(x_n) \right) g(\eta)^N \exp \left\{ \eta^T \sum_{n=1}^{N} u(x_n) \right\}.$$

Thus we have

$$-\nabla \ln g(\eta_{ML}) = \frac{1}{N} \sum_{n=1}^{N} u(x_n)$$

Sufficient statistic
Nonparametric Methods (2)

Histogram methods partition the data space into distinct bins with widths ϕ_i and count the number of observations, n_i, in each bin.

$$p_i = \frac{n_i}{N\Delta_i}$$

- Often, the same width is used for all bins, $\phi_i = \phi$.
- ϕ acts as a smoothing parameter.

- In a D-dimensional space, using M bins in each dimension will require M^D bins!
Figure 1.19 Scatter plot of the oil flow data for input variables x_6 and x_7, in which red denotes the ‘homogeneous’ class, green denotes the ‘annular’ class, and blue denotes the ‘laminar’ class. Our goal is to classify the new test point denoted by ‘\times’.
1.4. The Curse of Dimensionality

Figure 1.20 Illustration of a simple approach to the solution of a classification problem in which the input space is divided into cells and any new test point is assigned to the class that has a majority number of representatives in the same cell as the test point. As we shall see shortly, this simplistic approach has some severe shortcomings.

Figure 1.21 Illustration of the curse of dimensionality, showing how the number of regions of a regular grid grows exponentially with the dimensionality D of the space. For clarity, only a subset of the cubical regions are shown for $D = 3$.

curse of dimensionality
K-Nearest-Neighbours for Classification (2)

$K = 3$

$K = 1$
• K acts as a smoother
• For $N \to \infty$, the error rate of the 1-nearest-neighbour classifier is never more than twice the optimal error (obtained from the true conditional class distributions).
Nonparametric Methods (7)

Nonparametric models (not histograms) requires storing and computing with the entire data set.

Parametric models, once fitted, are much more efficient in terms of storage and computation.