PROBABILITY THEORY

FINITE SET S OF ELEMENTARY EVENTS

\[S = \{ (1, \text{b}), (2, \text{b}), (3, \text{w}), (4, \text{w}) \} \]

PROBABILITY DISTRIBUTION

- \[P : S \rightarrow [0, 1] \]
 - \(P(s_i) \geq 0 \)
 - \(\sum_i P(s_i) = 1 \)

- EVENT A IS ANY SUBSET OF S

- \(P(A) = \sum_{S \subseteq A} P(s_i) \)

SUM OVER ELEMENTARY EVENTS IN A

- AXIOMS:
 - \(P(S) = 1 \)
 - \(P(A \cup B) = P(A) + P(B) \uparrow \) DISJOINT UNION
 - \(P(A \cup B) = P(A) + P(B) - P(A \cap B) \)
A ball is selected from an urn containing two black balls, numbered 1 and 2, and two white balls, numbered 3 and 4. The number and color of the ball is noted, so the sample space is \{(1, b), (2, b), (3, w), (4, w)\}. Assuming that the four outcomes are equally likely, find \(P[A \mid B]\) and \(P[A \mid C]\), where \(A, B,\) and \(C\) are the following events:

- \(A = \{(1, b), (2, b)\}\), "black ball selected,"
- \(B = \{(2, b), (4, w)\}\), "even-numbered ball selected,“ and
- \(C = \{(3, w), (4, w)\}\), "number of ball is greater than 2."

\[P(A \cap B) = P((2, b)) = 0.25\]
\[P(A \cap C) = P(\emptyset) = 0\]
\[P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{0.25}{0.5} = 0.5 = P(A)\]
\[P(A \mid C) = \frac{P(A \cap C)}{P(C)} = \frac{0}{0.5} = 0 \neq P(A)\]
In the first case, knowledge of B did not alter the probability of A. In the second case, knowledge of C implied that A had not occurred. □

If we multiply both sides of the definition of $P[A \mid B]$ by $P[B]$ we obtain

$$P[A \cap B] = P[A \mid B]P[B]. \quad (2.25a)$$

Similarly we also have that

$$P[A \cap B] = P[B \mid A]P[A]. \quad (2.25b)$$

INDEPENDENCE OF EVENTS

If knowledge of the occurrence of an event B does not alter the probability of some other event A, then it would be natural to say that event A is independent of B. In terms of probabilities this situation occurs when

$$P[A] = P[A \mid B] = \frac{P[A \cap B]}{P[B]}.$$

The above equation has the problem that the right-hand side is not defined when $P[B] = 0$.

We will define two events A and B to be independent if

$$P[A \cap B] = P[A]P[B]. \quad (2.28)$$

Equation (2.28) then implies both

$$P[A \mid B] = P[A] \quad (2.29a)$$

and

$$P[B \mid A] = P[B] \quad (2.29b)$$

Note also that Eq. (2.29a) implies Eq. (2.28) when $P[B] \neq 0$ and Eq. (2.29b) implies Eq. (2.28) when $P[A] \neq 0$.
A = \{(1, b), (2, b)\}, \hspace{1em} \text{"black ball selected";}
B = \{(2, b), (4, w)\}, \hspace{1em} \text{"even-numbered ball selected"; and}
C = \{(3, w), (4, w)\}, \hspace{1em} \text{"number of ball is greater than 2."}

Are events A and B independent? Are events A and C independent?

First, consider events A and B. The probabilities required by Eq. (2.28)

\[P[A] = P[B] = \frac{1}{2}, \]
\[P[A \cap B] = P[\{(2, b)\}] = \frac{1}{4}. \]

Thus
\[P[A \cap B] = \frac{1}{4} = P[A]P[B], \]

and the events A and B are independent. Equation (2.29b) gives more insight into the meaning of independence:

\[P[A \mid B] = \frac{P[A \cap B]}{P[B]} = \frac{P[\{(2, b)\}]}{P[\{(2, b), (4, w)\}]} = \frac{1/4}{1/2} = \frac{1}{2}, \]
\[P[A] = \frac{P[A]}{P[S]} = \frac{P[\{(1, b), (2, b)\}]}{P[\{(1, b), (2, b), (3, w), (4, w)\}]} = \frac{1/2}{1}. \]

These two equations imply that \(P[A] = P[A \mid B] \) because the proportion of outcomes in \(S \) that lead to the occurrence of \(A \) is equal to the proportion of outcomes in \(B \) that lead to \(A \). Thus knowledge of the occurrence of \(B \) does not alter the probability of the occurrence of \(A \).

Events A and C are not independent since \(P[A \cap C] = P[\emptyset] = 0 \) so
\[P[A \mid C] = 0 \neq P[A] = .5. \]

In fact, A and C are mutually exclusive since \(A \cap C = \emptyset \), so the occurrence of \(C \) implies that \(A \) has definitely not occurred.
Let B_1, B_2, \ldots, B_n be mutually exclusive events whose union equals the sample space S as shown in Fig. 2.14. We refer to these sets as a **partition** of S. Any event A can be represented as the union of mutually exclusive events in the following way:

$$A = A \cap S = A \cap (B_1 \cup B_2 \cup \cdots \cup B_n)$$
$$= (A \cap B_1) \cup (A \cap B_2) \cup \cdots \cup (A \cap B_n).$$

See Fig. 2.14. By Corollary 4, the probability of A is

$$P[A] = P[A \cap B_1] + P[A \cap B_2] + \cdots + P[A \cap B_n].$$

By applying Eq. (2.25a) to each of the terms on the right-hand side, we obtain the **theorem on total probability**:

$$P[A] = P[A \mid B_1]P[B_1] + P[A \mid B_2]P[B_2] + \cdots + P[A \mid B_n]P[B_n].$$

Knowledge of $P(A \mid B_i)$ **and** $P(B_i)$ **lets us compute** $P(A)$.
Bayes' Rule

Let B_1, B_2, \ldots, B_n be a partition of a sample space S. Suppose that event A occurs, what is the probability of event B_j? By the definition of conditional probability we have

$$P(B_j | A) = \frac{P(A \cap B_j)}{P(A)} = \frac{P(A | B_j) P(B_j)}{\sum_{k=1}^{n} P(A | B_k) P(B_k)}, \quad (2.27)$$

where we used the theorem on total probability to replace $P(A)$. Equation (2.27) is called Bayes' rule.

$P(B_j)$ PRIOR PROBABILITIES

EXPERIMENT PERFORMED AND
A OCCURRED

$P(B_j | A)$ POSTERIOR PROBABILITIES

GIVEN ADDITIONAL INFORMATION
BAYES

- N EXPERTS / MODELS E_i

- IN EACH TRIAL t WE OBSERVE LABEL y_t DAtum

ASSUMPTION:

- ONE EXPERT E_i GENERATED $(y_1, y_2, ..., y_T) = \bar{y}$
- PRIOR PROBABILITY OF EXPERT E_i IS $P(E_i)$

$y \in \bar{y}$ finite

PROBABILITY OF DATA \bar{y} GIVEN E_i GENERATED IT:

$P(\bar{y} | E_i)$ DATA LIKELIHOODS

IMPORTANT SPECIAL CASE:

$y_1, y_2, ..., y_T$ ARE GENERATED INDEPENDENTLY AT RANDOM

Thus $P(y_1, ..., y_T | E_i) = \prod_{t=1}^{T} P(y_t | E_i)$

GENERAL CASE

$P(y_1, ..., y_T | E_i) = \prod_{t=1}^{T} P(y_t | E_i, y_1, ..., y_{t-1})$
For example: experts are coins $Y=\{0,1\}$

\[
\begin{align*}
E_1 & \quad E_2 & \quad E_3 & \quad E_4 \\
P(1|E_i) & = & 0.1 & \quad 0.2 & \quad 0.8 & \quad 0.9 \\
P(E_i) & = & 0.2 & \quad 0.4 & \quad 0.3 & \quad 0.1
\end{align*}
\]

$\tilde{y}_3 = (1, 1, 0)$

\[
P(E_i|\tilde{y}_3) = \frac{P(1|E_i)P(E_i)}{P(\tilde{y}_3)}
\]

Posterior

\[
= \frac{P(1|E_i)^2(1-P(1|E_i))P(E_i)}{P(\tilde{y}_3)}
\]

\[
P(E_i|\tilde{y}_3) \approx \begin{array}{cccc}
0.1^2 & 0.2 \cdot 0.9 & 0.8^2 & 0.4 \cdot 0.8 \cdot 0.3 & 0.9^2 \\
0.1^2 & 0.2 \cdot 0.9 & 0.8^2 & 0.4 \cdot 0.8 \cdot 0.3 & 0.9^2
\end{array}
\]

\[
\approx \begin{array}{cccc}
18 & 128 & 384 & 81
\end{array}
\]

For 1-heavy sequences

Posterior will become $\approx \arg\max_i P(1|E_i)$

Provided that all $P(E_i) > 0$