BATCH:
- Training and test data generated by same distribution
- If model class not too complex and enough examples, model that does best on training data is not too much worse on test data

ON-LINE:
- All is in flux
- No statistical assumptions
- Still can bound "regret":

\[
\text{Total loss of on-line} - \text{Total loss of best off-line chosen in hind sight}
\]

- Bounds hold for arbitrary sequences of examples
On-Line Learning

<table>
<thead>
<tr>
<th>experts</th>
<th>E_1</th>
<th>E_2</th>
<th>E_3</th>
<th>E_n</th>
<th>prediction</th>
<th>true label</th>
<th>loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>day 1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>day 2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>day 3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>day t</td>
<td>$x_{t,1}$</td>
<td>$x_{t,2}$</td>
<td>$x_{t,3}$</td>
<td>$x_{t,n}$</td>
<td>\hat{y}_t</td>
<td>y_t</td>
<td>$</td>
</tr>
</tbody>
</table>

Protocol of the Master Algorithm

For $t = 1$ To T Do

- Receive $x_t \in \{0, 1\}^n$
- Predict $\hat{y}_t \in \{0, 1\}$
- Get label $y_t \in \{0, 1\}$
- Incur loss $|y_t - \hat{y}_t| \in \{0, 1\}$
CASE 1: THERE IS A CONSISTENT EXPERT

GIVEN SEQUENCE \((x_t, y_t)\) s.t.

\[x_{t,i} = y_t \text{ for all } t \]

LOSS OF OFF-LINE COMPARATOR IS ZERO

NOISE-FREE CASE
Halving Algorithm

- Predicts with majority

- If mistake then number of consistent experts is halved
A run of the Halving Algorithm

<table>
<thead>
<tr>
<th>E_1</th>
<th>E_2</th>
<th>E_3</th>
<th>E_4</th>
<th>E_5</th>
<th>E_6</th>
<th>E_7</th>
<th>E_8</th>
<th>majority</th>
<th>true label</th>
<th>loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>x</td>
<td>x</td>
<td>0</td>
<td>1</td>
<td>x</td>
<td>x</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>x</td>
<td>x</td>
<td>x</td>
<td>1</td>
<td>x</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

consistent

For any sequence with a consistent expert, HA makes $\leq \log_2 n$ mistakes.

GAME AGAINST NATURE (ADVERSARY)

WHICH CHOOSES THE PREDICTION VECTOR \vec{x}_t AND LABEL y_t

IF THERE IS ONE CONSISTENT EXPERT
THEN ALG. $\leq \log_2 n$ MISTAKES
What if no expert is consistent?

For any sequence $S = (x_1, y_1), (x_2, y_2), \ldots, (x_T, y_T)$
- $L_A(S)$ is total loss of alg. A and
- $L_i(S)$ is the total loss of expert E_i

Want bounds of the form:

$$\forall S : \quad L_A(S) \leq a \min_i L_i(S) + b \log(n)$$

where a, b are constants

Bounds loss of algorithm relative to loss of best expert

$$\alpha = 1$$

$$L_A(S) - \min_i L_i(S) \quad \text{called regret}$$
Can't wipe out experts!
One weight per expert

Weighted Majority Algorithm

- Predicts with larger side
- Weights of wrong experts are multiplied by $\beta \in (0, 1]$

- β is fitness factor
- $HA : \beta = 0$
Number of mistakes of the WM algorithm

\[M_{t-1,i} = \text{# of mistakes of } E_i \text{ before trial } t \]

\[w_{t-1,i} = \beta^{M_{t-1,i}} \text{ weight of } E_i \text{ at trial } t, \quad w_{0,i} = 1 \]

\[W_{t-1} = \sum_{i=1}^{n} w_{t-1,i} \text{ total weight at trial } t \]

Minority \(\leq \frac{1}{2} W_{t-1} \)

Majority \(\geq \frac{1}{2} W_{t-1} \)

If no mistake then

minority multiplied by \(\beta \)

\[W_t \leq \beta W_{t-1} \]
If mistake then
majority multiplied by β

\[
W_t \leq 1 \left(\frac{1}{2} W_{t-1} \right)_{\text{minority}} + \beta \left(\frac{1}{2} W_{t-1} \right)_{\text{majority}}
\]

\[
= \frac{1 + \beta}{2} W_{t-1}
\]

\[
\frac{W_T}{\text{total final weight}} \leq \left(\frac{1 + \beta}{2} \right)^M W_0
\]

\[
W_T = \sum_{j=1}^{n} w_{T,j} = \sum_{j=1}^{n} \beta^{M_j} \geq \beta^{M_i}
\]

\[
\left(\frac{1 + \beta}{2} \right)^M \frac{W_0}{n} \geq \beta^{M_i}
\]
\[M \leq \frac{-\ln \beta}{\ln \frac{2}{1+\beta}} M_i + \frac{1}{\ln \frac{2}{1+\beta}} \ln n \]

\[M \leq \left(\frac{2.63}{a} \min_{i} M_i \right) + \frac{2.63 \ln n}{b} \]

For all sequences, loss of the master algorithm is comparable to the loss of the best expert

Relative loss bounds

With fancy choice of \(\beta \) that depends on \(n, M_{\alpha} \):

\[M \leq 2M_{\alpha} + 2\sqrt{M_{\alpha} \ln(N)} + \log_2 n \]

\(\uparrow \)

NECESSARY
FOR DETERMINISTIC
PREDICTION

[F]
STREAMLINE SETUP (NO LABELS)

FOR $t = 1$ TO T DO

CHOOSE AN EXPERT i

GET LOSS VECTOR $\hat{L}_t \in [0,1]^n$

INCUR LOSS $L_{t,i}$

GOAL: ACHIEVE SMALL REGRET

TOTAL LOSS OF ALG - TOTAL LOSS OF BEST

ALG I: DETERMINISTIC FOLLOW THE LEADER

- ALWAYS CHOOSE AN EXPERT OF MINIMAL LOSS

ADVERSARY:

- CHOSEN EXPERT i UNIT OF LOSS
- ALL OTHERS LOSS 0

(T IS # OF TRIALS)

\[
\begin{array}{c|c|c|c|c|c}
0 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
2 & 1 & 1 & 1 & 1 & 1 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
T & \frac{T}{n} & \frac{T}{n} & \frac{T}{n} & \frac{T}{n} & \frac{T}{n} \\
\end{array}
\]

LOSS OF ALG \sim n LOSS OF BEST

\[
\frac{\text{LOSS OF ALG}}{T} \leq \frac{\text{LOSS OF BEST}}{\lfloor T/n \rfloor}
\]
ALG III: PERTURB LOSSES OF EXPERTS
PREDICT W. PERTURBED LEADER

ALG IV: HEDGE ALGORITHM
(SIMILAR TO RANDOMIZED WEIGHTED MAJORITY ALGORITHM)

PROBABILISTIC CHOICE OF EXPERT

W_{t-1}: probability vector used at trial t

$w_{t-1,i}$ "believe" at trial t that i is best

$W_0, i = \left(\frac{1}{n}, \frac{1}{n}, \ldots, \frac{1}{n} \right)$

$W_t, i = \frac{w_{t-1,i} e^{-\eta l_t,i}}{Z_t}$

\uparrow NORMALIZATION

$\eta > 0$: LEARNING RATE

$e^{-\eta} = \beta \quad e^{-\infty} = 0$
\[w_{t+1, i} = \frac{e^{-\eta L_{t+1, i}}}{Z_t} \]

As \(\eta \to \infty \), all weight placed on best & hedge becomes "follow the leader" (ties broken uniformly)

\(\eta = 0 \) weights unchanged

\(\eta > 0 \) gradually move weight to experts w. low loss "soft min"

\(\eta < 0 \) \(\to \) high loss "softmax"

Next class:

If \(\eta \) tuned as function of \(n \) & \(\hat{L} \) then

\[\sum_{t=1}^{T} w_{t, i} L_t - \min_{\hat{L}} \sum_{t=1}^{T} i \leq V \] (1/n + 1/n)

\(\hat{L} \) if \(L^* \leq \hat{L} \)

Loss of alg. - loss of best

Regret