Learning Models of Users’ Informational Needs

Shawn Wolfe
CMPS 242
Aspects of Users’ Informational Need

• Typical models of a user’s need
 ▫ Includes simple model of content
 ▫ Little or nothing else

• What else might be a factor?
 ▫ Price
 ▫ Recency
 ▫ Readability
 ▫ Etc...

• How can we acquire more complex models? ML!
Prior work

- Previous study of Wolfe and Zhang
 - Domains
 - Airline Tickets
 - News Feed (information filtering)
 - Substantial improvement when all criteria used
- Follow-up study
 - Learn user model from past ratings (hold-one-out)
 - Best linear model: MSE 0.02689
 - Best nonlinear model: MSE 0.02390
- Can we do as well or better?
Data Set- YowNow

- From Yi Zhang’s dissertation 😊
 - ~ 9,000 instances
 - ~ 20 users
- Features (ratings)
 - Authority: 0 or 1
 - Novelty: 1, 2, 3, 4 or 5
 - Readability: 0 or 1
 - Relevance (to subject): 1, 2, 3, 4 or 5
 - Class value (user_like): 0, 0.25, 0.5, 0.75, 1
- Goal: learn class value from ratings
New Loss (Gain) Function

- **Common IR measure:** F_β
 - Harmonic mean of precision & recall
 - $F_\beta = \frac{(1 + \beta^2)P \cdot R}{\beta^2 P + R}$

- **Generalized to fractional relevance**
 - Prediction \hat{Y}, truth Y
 - $F_\beta = \frac{(1 + \beta^2) \cdot \|\min(\hat{Y}, Y)\|_1}{\beta^2 \cdot \|\hat{Y}\|_1 + \|Y\|_1}$

- **Issues**
 - Kinky!
 - Defined over entire set!
Regularization to Default Vector

• Use “reasonable” default W_0 to regularize
 ▫ Each criterion equally rated
 ▫ All min criteria \rightarrow minimum target
 ▫ All max criteria \rightarrow maximum target

• Linear Regression
 ▫ $W = (\lambda I + X^T X)^{-1}(\lambda W_0 + X^T Y)$

• Gradient Descent
 ▫ $W_t = W_{t-1} - (\eta/n)(\lambda \|W_{t-1} - W_0\|_1 + \text{Loss}(f(W_{t-1}X), Y)^T X)$
Nonlinear Representations

- **Partially nonlinear**
 - Pick two criteria, add 1 binary feature for each pair
 - **Example**
 - Authority (A) and Readability (R), each 0 or 1
 - New Features: F1 (A=0, R=0); F2 (A=0, R=1); F3 (A=1, R=0); F4 (A=1;R=1). Discard F1 and F4 as anchors.

- **Totally nonlinear**
 - Same process over all combinations
 - 2x5x2x5=100 new features (actually 96)
 - Discard original features
 - Also 5 binary class values
Square Loss Comparators

- **Machine Learning Demigod**
 - Makes optimal prediction based on criteria
 - Lower bound on square loss
- **Linear Regression on original representation**
 - Minimum loss on training set
 - Are nonlinear representations better?
- **Square loss from prior study**
 - Square loss from linear model: 0.02689
 - Square loss from best nonlinear model: 0.02390
Algorithms used

- Original Representation
 - Linear Regression (Squared Loss)
 - Gradient Descent (1-F_\beta Loss, Logistic Loss)
- Partially nonlinear
 - Linear Regression (Squared Loss)
- Fully nonlinear
 - Multiclass Logistic Regression (Accuracy)
 - Multiclass AdaBoost (Accuracy)
Procedure

- Repeat 10 times
 - Permute data
 - Reserve 20% data for testing, 80% training
 - Use 5-fold validation to search for optimal λ
 - Train model on entire training set
 - Use model to predict on testing set
- Report mean testing results
- Learn separate models for each user
Effect of Regularization on Linear Regression (Original Representation)
Effect of Regularization on Logistic Regression (Original Representation)
Losses (Gain)

<table>
<thead>
<tr>
<th>Method</th>
<th>Squared</th>
<th>Logistic</th>
<th>1-F$_\beta$</th>
<th>(Accuracy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DemiGod</td>
<td>0.02159</td>
<td>0.07016</td>
<td>0.07397</td>
<td>0.9186</td>
</tr>
<tr>
<td>Linear Reg.</td>
<td>0.02736</td>
<td>0.08681</td>
<td>0.09556</td>
<td>0.9087</td>
</tr>
<tr>
<td>GD Log. Reg.</td>
<td>0.02797</td>
<td>0.08849</td>
<td>0.09626</td>
<td>0.9036</td>
</tr>
<tr>
<td>GD 1-F$_\beta$</td>
<td>0.03731</td>
<td>0.1278</td>
<td>0.1106</td>
<td>0.8253</td>
</tr>
<tr>
<td>Combo 2+4</td>
<td>0.02595</td>
<td>0.08322</td>
<td>0.09137</td>
<td>0.9073</td>
</tr>
<tr>
<td>MC Log. Reg.</td>
<td></td>
<td></td>
<td></td>
<td>0.6219</td>
</tr>
<tr>
<td>MC AdaBoost</td>
<td></td>
<td></td>
<td></td>
<td>0.3941</td>
</tr>
<tr>
<td>Previous LR</td>
<td>0.02689</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prev. C 2+4</td>
<td>0.02390</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conclusions

• Nonlinear representations
 ▫ Some nonlinearity can help
 ▫ Too much can hurt
• Gradient Descent
 ▫ Not finding global optimum
 ▫ Speed vs. analytical solution problematic
• Regularization- two edged sword
• F_β as a gain (loss) function
 ▫ Appears to have too many local minima
 ▫ Work in progress